e
it

i ;
e
i

i

eSS T

S

iz

e
i

e L
e

e
: i

.

o B
S ek
e

Gt o
e

i

4

i
o

i

i e

e
R 5
e
e

g
R e
e
5 e
o el
. G
-
e

e
vewww&w&a»%%» 3
s 5 e . ;

e
Lt .

G i &a&«v%%v@ 2

e

s

e
i e S

s

R

G

i
g o ”
i
G
o
e
b

P
frEa
g

G
e
e
. wﬂ»&@&

s
e g D
v.*&.%%?%é&.@&.x
o G e

L
e e s
,.>é».ﬂ».§s§.&&& ea»&wﬁw%s&a :
e .»@%.xe@xe&,ww«« .
SR e
e :
. : B s
G L -
SR . i
i g
e wﬂm»w:e»&msww .
o
e
G
S

A

The original Hardcore Computing was
created when the ‘right-tocopy’ vs. locked
software controversy was at its fanatical
height. At that time the major computer
magazines began a policy of information
suppression by not publishing information
about making back-up copies of copy-
protected diskettes and refusing to publish
ads that would have informed their readers
about products that would make those
copies.

Hardcore published not only the ads that
were ‘blacklisted’ but articles and how-to
information on making back-up copies as
well as step-by-step instructions on how to
de-protect (softkey) various locked-up soft-
ware so that even Apple’s Copy-A program
would make back-up copies. In time the
fanaticism waned and now most computer
users know well the wisdom of making
back-up copies of such ‘locked-up’
software.

If you took all the old Hardcores, tore off
the fancy covers, deleted all the editorial
material, out-of-date interviews and letters,
updated the remaining material, and then
‘included the most recent and most com-
plete list of parameters for the major bit-
copy programs... and packed it all into a
single volume... you'd have the core of
Hardcore Computing. We call it: The Best
Of Hardcore Computing.

'The Best of...” volume is not merely a
reprint of old data. Everything has been up-
dated or re-written and consolidated, im-
proved, concentrated. ‘The Best of..." is not
just a collection of unrelated articles. From
the first article and program to the last,
you'll discover the soul of your Apple.
DiskEdit and DiskView starts you on a
tutorial of disk formatting, ending in ‘parms’
for the four leading bit-copy programs as
well as Super I0B, Hardcore's own de-
protecting and copy program. Then when
all the serious stuff is over, fun and games
begin with Text Invaders and Zyphyr Wars.

The Best Of Hardcore Computing is
published and copyrighted 1984 by
SoftKey Publishing, P.O. Box 44549,
Tacoma, WA 98444.

Here's a helpful hint if you’re planning
to type in any of the listings in this volume.
First type in Checksoft and Checkbin (see
the back of this volume) so that you can use
the checksums printed with each listing to
insure that your typed version is correct.

Don’t like typing?
Send $9.50 to:
Hardcore COMPUTIST
The Best of Diskette

P.O. Box 44549
Tacoma, WA 98444

and get all of the programs
in this volume sent to you on disk

Table of Contents

Getting into DOS with
DISKEDIT i ui s wi w5 w6 5w s v 06 a5 sor sbswsscons 55 99 595 400 o0 w6 b 226 1
by Charles R. Haight

An inside look at disk formats using
DISINTEW: - oo v v s sme s s o 550 50 S e i 3 ARl 5% wR BH GSIGTARS 12
by Charles R. Haight

Deprotecting disks with
BUPER LOB. ouii v wm o ts s wmm i ssassiss ws s sn e 4w 15
by Ray Darrah

A quick and easy way to
UNLOCK HYPERSPACE WARS, 20
by Robb Canfield

Taking a peek at

BOOT CODE TRACING 21
by Mycroft

List of Publisher abbreviations and

INTRODUCTION TO ‘PARMS' i 23
The Compleat Guide to

LOCKSMITH PARAMETERS 24
Step-by-step guide to making backups using

NIBBLES AWAY Il PARAMETERS0coiiuiinnn 31
Technical notes and making backups using

BACK-IT-UP ||+ PARAMETERScccieviiniannnn 35
How to make backups using

GOPY |l PLUS PARAMETERS :i::onoiesemwsesse: i a5 o 38
Curing those Auto-Start ROM blues

HARDWARE SOLUTIONS . 5: 5 s sonmnasusssse seses mamsts 46
A MENU HELLO PROGRAMciiiivinieiiian. 47

by Robb Canfield
USING BOTH SIDES OF YOUR DISKETTES 51

Advanced Playing Techniques, or how to get
INSIDE CASTLE WOLFENSTEIN 5w oot o i i « 52
by Robb Canfield

Learn to use and understand Strings with

TEXT INVADERE : i v 05 sin 5o e v st sssabiia s nvas s o 55
program by Bev R. Haight

article by the staff

Getting into Hi-res with
ZYPHYR WARS. i« o6 oi o5 o6 o5 o cammmimmsss 45 bs e o a6 o6 o 68 58
by Bev R. Haight

CHECKSOFT/CHECKBIN . o\ o v et ettt 62

A Fix
For DiskEdit

| (from the Best of Hardcore Computing)

L ike the other pitied people who actually
| typed the huge hexdump for DiskEdit

starting on page 10 of The Best Of Hardcore
Computing, I was very disappointed when all
| I got was some dumb program which said
| something about AceWriter.

This forced me to purchase The Best Of
Hardcore Computing library disk. On it, I
noticed DiskEdit was correct. Using the
monitors “V’’ command, I discovered that the
Hexdump printed in The Best Of Hardcore
| Computing is incorrect from the first byte all
the way to location $B#7.

Following is the correct Hexdump listing up
to $B@7. Since the change in the first part of
the hexdump changes the checksums for the rest
| of it, after location $B@7, the new checksums
are listed.

0300: 0@ 11 08 0@ @@ 8C 32 3@ $68DE
0808: 36 37 3A AB 31 30 3A B2 $2B6A
@810: 90 0@ @@ 4C 73 @8 @1 6@ $DAFC
P818: @1 PO 00 @0 27 @8 @@ @9 $1EED
0820: 0@ 00 01 02 00 6@ @1 @ SDEQL
@828: @1 EF DS 02 02 00 00 0@ $43A8
0830: 01 01 00 @0 @@ @1 @@ @9 $6EDD
0838: 00 0@ SB OC DO 0@ @B 4C $792A
0840: 98 B8 4C 29 DA 4C BE 12 $62DF
@848: 4C 7E @F 4C 0D DA 4C 6B $E@AD
PB5Q: 22 4C CF BC 4C BD OC 4C $46357
@858: 5D @E 4C AE @B 4C @3 12 $BCOF
@86@: 4C DA 11 4C DA QF 60 6@ $457A
0868: 60 @@ FF @1 02 0@ 00 D1 $1CD9
@870: 10 23 @@ 20 E3 03 84 48 $8710
@878: 85 49 AD @1 B1 48 8D 17 $9ADS
@880: @8 C8 B1 48 8D 18 @8 A9 32778
0888: 1F 85 67 A9 12 85 68 6@ 3894E
@890: A9 DS A@ 16 20 D9 @3 99 $49B9
@898: 06 AD 23 08 8D 2E 08 6@ S$AAFS
08AQ: 00 00 00 @0 00 02 0@ 0@ $8A7S
@BAB: 00 00 00 00 20 22 00 @@ $AAFS
?8B0: 00 00 00 00 00 00 DD @@ $8A7S
P8B8: 00 00 00 00 90 00 B0 O@ $AAFS
P8CO: 00 00 00 00 90 @2 00 0@ 38A7S
PBCB: 00 02 Q0 00 00 00 00 0@ SAAFS
28D0: 00 00 0O 00 P0 VO 0P P@ $BA7B
@8D3: 00 20 0D 00 00 00 0P B0 BAAFS
PBEG: 00 00 00 00 90 00 02 @@ $8A7S
PBEB: 00 00 00 00 00 02 2@ 0@ SAAFS
08FQ: 00 0O 0D 00 0@ 20 @D @ $BA7S
D8F8: 0O 0C G0 00 O 0O 0O 0@ SAAFS
@900: 0O 0@ DD PO 0D 0D OO @0 $BATS
@908: 00 00 O @0 00 @0 00 G0 SAAFS
@910: 02 20 00 92 00 00 00 G@ $8A7S
0918: 00 00 00 00 0@ 00 0@ D@ SAAFS
0920: 0O 00 0O 00 0O @D 0@ 0D $BAT7S
@928: DO 00 Q0 0P 0D 00 @0 D@ BAAFS
0930: 00 00 00 00 30 00 00 G0 $8A7S
@938: 00 0O 00 00 00 00 00 0@ SAAFS

8940:
8948
8950:
B958:
@960:
@968:
B97@:
9978:
2980:
#988:

0990;
2998:
09A0:
D9A8:
@9B@:
@9B8:
@9ca:
BP9Ce:
9900:
@9D8:

@9ED:
@9E8:
@9F@:
09F8:
BADa:
BAD8:
@A10:
QA18:
DA20:
0A28:

BA38:
BA38:
QALD:
BALB:
BAS@:
BASS:
DAGD:
QAGB:
DATO:
DA78:

2ABD:
BA88:
DASD:
0A98:
QAAD:
DAAB:
DABR:
@ABS8:
BACD:
BACB:

@ADD:
@BADS:
DAEQD:
PAES:
QAFQ:
BAF8:
BBRA:

oa
00

oa
00

o0
2o
oo

2o
oa
2
2o
]

o0
i)

o
A9
28
24

F8

oo
c8
E4
AS
20
28
04
26
24
26

0]
1)
oa
o0
0]
0o
oa
0o
2o
1]

oe
ae
oo
2o
02
oa

@0
02
0]

BD
ce
85
25
8F
g8
8@
B0
A8
A8

Do

BD
85
27
co
AS
@D

DD

2@
A6
08
20
26
4A
08

sSS3388888

95
@4
25
co
A
1@
04
26
B4
26

24

5F
26

34
A
1A
8z
EA

8F
E4
oa
B1
68
4A
0@

"]
(4]
20
2
0a
oa
2a
2o

50
50
@A
BD
A2
a8
86
27
8F
F7

oA
BD
25
]}
AE
4A
2B

A9
]
AE
AQ
6F
LA
29

Do
D@
28
QA
CA
@5
85
41

A9
A3

@D
@9
6F

a8
A6
30

sSS888888

29
2o
]
0e

o8
00

")
00

3A
B4
A2
20
84
AA

oe
ea
E6
A5
AQ
ac
@5
ar
@s

@5
ar
18
85
BD
F@
E4
4E
B6
@2A

8D
48
28
bl
F@
E4
c9

oa
oo
20
20
oa
oo
]
01

oa

611
e
ea
28
8D
85
@21
03
3B
AQ

E8
85
25
25
91

e
28
28
5@

5@
oA
69
29
88
23
60
58
C3
A5

6C
EC
F@
26
44
EC
3A

$8A78
$AAFS
$8A78
$AAFB
$8A78
$SAAF8
$8A78
$AAFB
$8A78
SAAFB

$8ATS
$AAF8
$8A78
$AAF8
$8A78
$AAFB
$8A78
$AAF8
$8A78
SAAF8

$BAT8
$AAF8
$8A78
$AAFB
$79DA
$45AC
$2560
461D
$D75B
$DECY

$2A16
SOEAE
$6CF7
$FD3E
$5AC2
$OCED
$6629
$1411
$DE15
$5CC5

$7681
$3600
$C208
$9DEZ
$3A77
SOATA
$F356
$AB3E
$53C6
$9520

$81D9
$5368
$P2FF
$SEAEQ
$9C6B
$C880
$75D4

@B08-SDE13
@B10-$C4B7
BB18-BALED

PB2Q-%$9975
@B28-30EFE
@B30-SB69C
@B38-sp12p
PB4B-$859D
@B48-$D64D
@B50-S28EE
@B58-SACAD
BB6D-$BESS
BB68-$3987

@B70-%12C9
@B7B-SFES6
eB8@-52822
BBBB-%42A3
@BF@-$586C
BB9B-$7764
@BAD-$5963A

'@BAB-55151

BBB@A-53CB6

BBB8-53097

@B8CO-$3168
BBCB-$11FA

|BBDO-%$6398

PBDB-%F2D1
BBED-36366
@BEB-$629D
OBFA-$420D

‘@BFB-%C23D

@CO0-$29E3

@COB-$DBFS

BC10-SA1FF
BC18-$018F
BC20-3719F
@c28-%D1CF
@C30-3017F
BC38-%D1CF
OC40-%017F
BC48-%D1CF
PC5@-$C15F
BC58-%214F

BC6O-SF1FF
BCE8~%214F
BC7A-SF1FF
DC78-%214F
BC3B-BF1FF
BC88-5214F
@CP@-3698BC
BC98-%5D58
@CAD-85E21
BCAB-S9E99

BCBA-%1EE1
@CB8-BASBF
BCCO-$SEFRC
@CCB-SF9ET
@cpa-$B3C3
BCDE-SFBAD
BCE@-$CA42
DCEB-3%FBA
BCF2-%318B5
BCFB-$F436

@DAD-$DCESL
ADA8-%$17B8
@D10-%DAB2
@D18-$FB3B
@D20-3BD6A
AD28-52AD0
@D3@-SACD?
@D38-%$D600D
@D4@0-3D3FB
@D4B-%SA45C

@DS@-%E1BE
PD58-%59F%A
@p6@-%DDS7
BD68-SABBA

@D70-%8C3B
@D78-$3F3F
@DBD-$1E61
AD88-5DAB3
@D9a-$SD5ER
@D98-%B658

BDAG-SELFO
PDAB-5@41F
PDB@-SBEDB
@DBB-5BFA2
@oce-sp3n7
@DCc8-%$82D8
BDDO-$F4CS
DDDB-S$SB4BA
QDER-$95EA
@DEB-52151

PDFA-%8719
@DF8-%88C7
BEQB-SAEDS
BEBB-S1EBD
RE10-SE3CE
PE18-$PASA
PE20-%4ECS
PE28-$SELDB
@E30-$1CEF
@E38-3556D8

BE4B-S4FEB
PE4LB-SEAZS
BES@-3B9AC
BE58~3DESF
PE&@-395F4
DE6E-5T778B6
PE70-$8198
@E78-S5E7D
QEBA-%$258B5
QE38-83225

BES@~$7455
BEFB-SA66A
DEADP-$47BE
BEAB-S4L7R2
PEBD-$C440
PEBB-SCBSO
QECA-SC3T7F
BECB-343DA
BED@-$7FBD
BEDB-$473E

@EE@-$73F5
@EEB-$B11E
BEFQ-$043C
DEFB-$4443
BFQ@-%2535
PF@8-%213C
BF10-$4A53
BF18-$E450

* BF20-%2479

BF28-SEA3S

BF30-56648
@F38-$BYBE
BF4B-39DA3
BF48-58568
BF5@-$5F35
@F58-55B38B
BF60-S67F7
BF68-%$1665
BF70-30541
PF78-SD3IE?

OFBO-$C4F4
@F88-S0O7BRE
BF9Q-%F3F2
DF98-3102A
@FAB-$B9OC
@BFAB-%D268
@FBO-S7DF8
OFB8-$2D7E
DFCB-$4329
BFC8~$EL55

@FDD-$71DB
@FD8-$8948@

DFEC-STOE9
OFEB-SA984
GFFQ-$8502
BFF8-SE7647
18@0-5SFB2F
10@8-%100C
1018-%4696
1018-%2B9D

102@-3A2E6
1028-59049
1030-3%CD28
1838-$2ADE
1040-%4567
1048-56286
1050-$A4DE
1058-8SBFDF
1060-SCE9D
1068-33C8F

1070-$FF31
1078-$6C3E
108@-SEFAG
1088-$72A3
1090-%3128
1098-3S9ED4
10A0-SEG6A9
10A8-%5216
10B@-$9FDE
18B8-%$91083

10C0-$3359
10C8-359A7
18D@-SAAQB
1808-%5294
1@EG-$FCOD
10EB-SABF8
10FB-$D2ED
18F8-$CEEF
1108-SA28C
11@8-$FAB1

1118-$292E
1118-$0004
112@-$898A
1128-3AB23
1138-SAFAB
1138-$39F3
114@8-SAESD
1148-$98D1
1158-$5211
1158-$760E

11608-$33CA
1168-3A35E
1170-$FBBB
1178-%F126
1180-37899
1188-5D7A2
1190-$26EA
1198-SEDA3
11AB-$8F2E
11A8-%D263

1180-%6D6D
11B8-86FC1
11CB-$9FES
11C8~%1D96
11D@-%$B5B4
1108-$EE35
11EQ-$B602
11E8-$F@D6&
11FB~SECA7
11F8-$6E&C

12@8@-5B9A3
1208-%ED42
1210-$BFAE
1218-30313
1220-%1583

.Hardcore COMPUTIST No.14

21

Getting into DOS with

DiskEdit

Certain tools are required to understand
DOS and to manipulate disk files. The first
is a nibbler or bit editor. The second and
most important of these is a sector editor.

DiskEdit is one such utility.

DiskEdit is a user oriented direct disk ac-
cess program. Simply stated, DiskEdit al-
lows the user to read or write any sector
on a disk. This means that the user can:

Directly edit files on disk.
Change text in binary files.
Insert illegal characters in REMs.
Directly alter data base files.
Move sectors (even between disks).
Repair crashed disks.
Format catalog names.
Remove illegal codes in file names.
Write flashing and inverse titles.
Repair the VTOC.
UnDELETE deleted files.
Hide file names.

DiskEdit will display an entire sector as
hexadecimal and ASCII.

The keyword in DiskEdit is simplicity.
The commands are single key entry (you
don't have to keep hitting return). With Dis-
kEdit you can directly enter control, in-
verse, flashing and lower case characters.
Input and display information can be in hex
or decimal. The shimmering cursor is easy
to identify even with a screen full of inverse
and flashing characters. You can jump the
cursor to any absolute position within a sec-
tor. The NEXT and LAST commands allow
you to single-step through track/sectors.
And DiskEdit has a simple escape. If you
change your mind, pressing the escape
key will set the defaults and return you to
the command mode.

Disk Overview

Before we begin entering DiskEdit, let’s
take a closer look at DOS and a normal
disk.

The flexible (or floppy) diskette can be
thought of as a disc-shaped piece of
recording tape, and essentially that's all it
is. A flat disk shape is used, instead of a
flat strip (as in a tape), in order to maximize
the rate of data transfer. For instance, to
transfer data to and from a tape, the com-
puter would have to READ all of the tape
preceding the area where the data was
stored before it could transfer the required
data. This method of information retrieval
is known as ‘‘sequential access’ and is

By Charles Haight

about the same as scanning a casselte
tape for a favorite song.

The disk, on the other hand, is setup in
such a way that the computer can go
directly to a piece of data or program by
scanning the disk laterally. This method of
information retrieval is known as “‘random
access’’ and is similiar to selecting a par-
ticular song on a record.

Before a disk can be used, it must be for-
matted. The INIT command is used for this
purpose.

When a disk is initialized, the Disk Oper-
ating System (DOS) writes 35 concentric
tracks. Each track is divided into 16 blocks
called “‘sectors’’. (DOS version 3.2 writes
only 13 “'sectors”.) Each sector contains
an address mark and a data mark. These
marks start and end with a unique pattern
of bytes.

The address mark tells the DOS what
track/sector it is currently reading. It con-
tains the volume, track, sector and check-
sum information. The data mark contains
the actual data. It tells the DOS where the
data begins and ends and includes a
checksum that is used to verify the accura-
cy of the data.

If you have ever tried to load a program
and the disk drive started making a slight
chatter, chances are that the DOS could
not read one of these markers. It then
recalibrates the read/write head by moving
it back to track zero and stepping (count-
ing each track that it passes over) back out
to where it was supposed 1o be.

The tracks are numbered from $00 (0) to
$22 (34) and the sectors from $00 (@) to $0F
(15). Tracks $0@ through track $02 (a total
of three tracks; zero, one and two) contain
the DOS program.

The DOS gives the Apple the ability to
manipulate data on a diskette. In this pro-
gram are all of the commands related to
controlling the disk drive (i.e. CATALOG,
INIT, LOAD...) and aset of ERROR mes-
sages which, unless you either are a ma-
gician or don't use the Disk Il, you have
probably seen before.

The disk controller card that connects
the Disk |l to the Apple also has a small pro-
gram on it. When you boot a disk, this pro-
gram tells the Disk Il to read track $0@ (@),
sector $00 (0) (remember, we start count-
ing at zero instead of one) into memaory.

The program on track $00, sector $00
contains the information required to read

in sectors $00 through $09 on track $00.
The program on sectors $00-$09 reads in
the remaining information on track $00-$02.
When this process is completed, the entire
operating system (DOS) will be in memory.

At this point, DOS takes over and runs
the “HELLO" program. The program that
was used to initialize a disk is usually re-
fered to as the hello or greeting program.

In order to find your "HELLO" program,
DOS goes to the Volume Table of Contents
(VTOC) and Directory located on track $11
(17). The VTOC and Directory are used by
DOS whenever you read or write to the
disk. The VTOC or “bit map’’ shows which
sectors are in use and which are free. The
second and third byte of the VTOC point
to where the directory starts.

The Directory begins on sector $0F (15)
and continues down to sector $01 (1). The
second and third byte of each directory
sector point to the next available sector. If
these two bytes are zero, then there are no
more sectors. The Directory contains a list
of all the files on the disk. Each entry con-
tains a pointer to the track/sector list, a file
status (locked/unlocked) code, a file type
code (1 letter), the file name (30 characters)
and the file size. The track/sector list is a
list of track/sector pairs that are used to
store that program. This is why saving a
blank file always takes two sectors. One for
the blank file and one for the track/sector
list.

DOS will read the VTOC which will point
to the directory. DOS then finds the pro-
gram name in the directory and finds where
the track/sector list is. DOS then loads all
of the track/sector pairs into the proper
memory locations. Finally, DOS transfers
control to the resident BASIC (Applesoft?)
which will run the program.

Entering the Program

Enter the machine code portion of Dis-
kEdit first. Save it to disk as ED.OBJ.

BSAVE ED.OBJ, A$808, L$A21

Enter the BASIC listing and save it to
disk as ED.BAS.

SAVE ED.BAS
Bload the binary file.
BLOAD ED.OBJ

Type “RUN’' and press return. After the
“2UNDEF'D STATEMENT ERROR"

The Best of Hardcore Computing Page 1

message, run ED.BAS.
RUN ED.BAS

This will combine the two programs to
form DiskEdit.

Type ‘X’ to exit to BASIC. Now, insert a
blank disk in the drive and type ‘INIT DISK
EDIT’. Use this back up copy for the fol-
lowing examples and ALL other uses.

Getting Familiar

This exercise will aid you in understand-
ing how to use the commands by taking
you on a tour of a normal DOS diskette.
Please read each paragraph before press-
ing any keys and follow the directions
carefully.

Insert the DiskEdit back-up disk in Drive
1. Turn on your computer. DiskEdit will
prompt you when it is ready.

Press any key to start.

What is your status?

On the botton of the screen are the sta-
tus indicators and prompts. They tell you
the slot (SL), drive (DR), track (T), sector
(S), volume (V), byte position (B), filter (F)
and data entry mode currently selected.

Reading

Press the ‘R’ key. This tells DiskEdit that
you want to READ a sector from the disk.
A flashing prompt will appear next to the
track (T) indicator. DiskEdit is asking you
what track to read.

Type ‘01'. This tells DiskEdit that you
wish to read track $@1 (1). The flashing
prompt will move over to the sector (8) in-
dicator. Respond to this prompt by typing
‘8’

The disk drive should whirr for about two
seconds, and then stop. The screen should
be full of numbers and letters. You are now
looking at the contents of track $1 (1), sec-
tor $08 (8) in what is known as hex or hex-
adecimal format on the left side of your
screen and ASCII on the right side.

Hex a what?

Hexadecimal is a base sixteen number-
ing system. It gets its name from the fact
that it contains all of the numbers found in
normal base 1@ (decimal 0-9) plus six al-
phabetic characters (A thru F).

Say ‘AS-KEY’

ASCI| stands for “‘American Standard
Code for Information Interchange.” This is
the alphanumeric equivalent of all of those
hex symbols on the right.

Error messages

The sector you are now viewing ($08)
contains the DOS error messages (they are
continued on sector $09).

Press the ‘N’ key. This will increment the
sector count and cause Diskedit to read the
next sector. If the sector count had been

at $0F (15), the track count would have
been incremented by one and the sector
count reset to $00 (0).

The ““Boot” Program

You are now viewing the sector where
the “Boot”’ program name is stored. In the
center of the screen is the file name 'DISK
EDIT'. This is the name of the program that
the DOS will automatically ‘RUN’ when this
disk is booted. (If you decide later to
change the boot program name on this
disk, this is where you should come.)

Let’s follow how DOS located the file
“DISK EDIT"' when you booted this disk.

Press ‘R’ to read. Type ‘11’ for the track
and '®’ for the sector.

You are looking at the VTOC or bit map.
The second and third byte point to the first
directory (catalog) sector. These byles
should be ‘11 0F’,

Press ‘R’ and type ‘11’ for the track and
‘F’ for the sector.

The sector you are viewing is the first
part of the directory, which extends down-
ward to sector $81 (1). Press the zero key.
This is a special function key designed to
make viewing catalog sectors more
meaningful. The screen will return to nor-
mal when you press any other key.

Moving the cursor

The |, J, K and M keys are the cursor
movement keys. The cursor has a wrap
around feature. If you go off the screen on
one side, you will come back on the oppo-
site side.

Press the ‘O’ key. The flashing prompt
will appear next to the byte position (B} in-
dicator.

This command allows us to move the
cursor to a specific location on the screen.
Move the cursor to the beginning of the file
name by typing ‘OE’. The cursor should
now be in front of the ‘D’ of “DISK EDIT”.

Move the cursor back one character by
pressing 'J’. Look at the hex portion of your
screen. The ‘@2’ is used by DOS to tell what
type of program DiskEdit is and whether it
is locked or unlocked. The ‘@° means that
the file is unlocked. The ‘2’ means the file
is Applesoft.

Editing

Press the 'E’ key. This tells DiskEdit that
you wish to edit the sector.

Type ‘82", Press 'ESC’ to exit the EDIT
mode. Press the ‘O’ key. Type ‘2C’. The
byte you are looking at and the ‘00’ follow-
ing it are the hex equivalent of the sector
use count for the file. Press the ‘E’ key.
Type '00’. Press ‘ESC’ to exit the EDIT
mode.

Press the zero key.

The program HELLO is shown with an
asterisk. Changing the ‘02’ into a ‘82’
locked the file. Entering the ‘00’ will change
the sector count for the file to zero.

Writing

WARNING: Read the following para-
graph completely before you press any
keys.

Up to this point, you have only been edit-
ing the disk information that is in the com-
puter’s memory. In order to make the
changes permanent you need to WRITE
this information back to the disk.

The command to do this is 'W’ for
WRITE. Press the ‘W' key. Press
‘RETURN’ for the track (T) and sector (S).

When the RETURN key is pressed in
response to a prompt the program will act
as if the default values were entered. The
default values for the track and sector are
the last track/sector that was read or
written.

The program will beep and a warning will
be printed. This is your last chance to
change your mind. You must press
RETURN to have DiskEdit write to your
disk. Any other key will abort this operation.

Press RETURN. The buffer contents are
now written to the disk. Press the ‘C’ key
to see the catalog. The first file will be
locked (indicated by the asterisk ‘*' next
to the file type) and the sector count will
be ‘000'. Press any key to continue.

This completes the exercise. Experiment
with DiskEdit using this same scratch
diskette.

Summary of Commands

ESC Thisisthe “‘| changed my mind"
key. Press this key to reset defaults and
exit back to the command mode.

RTN The RETURN key, when used to
answer an input prompt, will accept the cur-
rent default and continue. (Example: When
prompted for the track and sector during
a read command, pressing RETURN twice
will cause the current track and sector to
be read.)

> Track skip command. Increments the
track number and performs a READ. Does
not increment the sector.

< Track skip command. Decrements
the track number and performs a READ.
Does not decrement the sector number.

A Sets character entry mode to ASCIl

B Disassemble buffer command. Calls
the monitor to disassemble buffer contents
starting at the cursor location. Use the
space bar to continue disassembly one line
at a time or press RETURN to disassem-
ble 20 additional lines. Press ‘P’ to print the
screen display. (Press ESC to exit.)

C Displays the disk catalog using the
current slot and drive. Prints the number
of free sectors on the disk.

D Flips the active drive from 1 to 2 or
from 2 to 1 on each keypress.

E A continuous-adit mode, this mode
allows you to type changes just like on a
typewriter. Pure cursor movement is sup-
ported using control keys. If you are in

The Best of Hardcore Computing Page 2

hexadecimal format, only valid hex digits
are accepted as input. In ASCII format all
keys are valid except the control keys list-
ed below. (Press ESC 1o exit.)

Ctrl Key Function
F set FLASH mode
| set INVERSE mode
N set NORMAL mode
Q mave cursor up
Z move cursor down
— move cursor right
- move cursor left

+ This edit submode is entered using
the plus (+) key. The ‘>>EDIT< <’
prompt is changedto ‘+ +EDIT + + ', ltis
identical to the normal edit mode except
that it does not support control functions.
All keys are valid except ESC. Control
characters may be directly entered. The
plus (+) key or the semi-colon (;) may be
used to enter this submode.

F This is the filter format command it
allows you to change the filter values so
that you can configure your own filters.

G Turns the sound on or off each time
you press the ‘G’ key. (Default at BOOT is
on.)

H Sets character entry mode to Hex-
adecimal

I Moves cursor up.

Moves cursor left.

Moves cursor right.

Moves cursor down.

Reads last sector.

Reads next sector.

Allows cursor to be jumped to any
absolute position in the displayed sector.

P Sends the buffer contents to your
printer. A header is printed first which
shows the track, sector, and volume. When
first used, the program will ask which slot
your printer is using and whether you wish
to use 40 or 80 columns.

R Prompts you for the track and sec-
tor to read. Use the RETURN key to accept
default values.

S Prompts you for a new slot. Valid en-
tries are from 1 to 7.

U Toggles the status indicators be-
tween hex and decimal and updates the
display information. Only the track, sector,
and cursor are affected by this key. (Default
at BOOT is hex.)

W Prompts you for the track and sec-
tor to write to. Use the RETURN key to ac-
cept default values. After entering the track
and sector, DiskEdit will beep and pause.
This is your last chance to change your
mind. Press RETURN to WRITE, or any
other key to escape.

X Ciears the screen and exits to
BASIC.

ASCIi Filters

The number following the filter (F) indi-
cator is the filter currently selected.

OZr2xec

There are 9 filters. Each affects the for-
mat of the displayed screen contents. They
do not change the actual buffer contents
in any way. They may be selected by press-
ing the corresponding number (1-8) key.

Rolling your own

The filters can be modified from the key-
board. Select a filter (1-8) by pressing the
appropriate number key. Press the ‘F’ key.

The 256 screen characters are divided
into 8 blocks. The prompt under ‘BLOCK'
indicates the original group of characters
while the prompt under ‘CHG:’ indicates
what characters will be displayed on the
screen.

The first prompt is ‘INV1’ for inverse let-
ters. Press ‘7'. This causes all inverse
characters in block 1 to display as normal.
Block 7 is normal letters. The ‘INVY’
prompt under 'CHG:" will change to
‘NORZ2’. By pressing a number from 1 to
8, each of the original blocks can be
changed to display as any other block.
Pressing '‘RETURN’ will skip a block.

Next to ‘CHG:" is 'FN#'. The “FN#' is
short for function number. There are 3
functions.

1. Print block, delete one character

2. Delete block, print one character

3. Delete entire block

Customizing the Program

DiskEdit is an Applesoft program with
packed machine code. This means that the
machine code portion of the program is hid-
den in such a way that DOS thinks it is part
of the Applesoft program.

The machine code is hidden behind the
REM in line @ rather than at the end of the
BASIC program. This was done in order to
allow program modification while keeping
the program size as small as possible.

If you load the program and list it, you
will see a single BASIC line:

@ CALL 2167 : GOTO 10 : REM

In order to make changes you will need
to follow these steps:

1. RUN the program.

2. When the copyright notice is on the
screen, press RESET to exit the program.

3. LIST the program and make changes.

4, After making any changes, RUN the
program and exit using the "'X’’ key. This
will change the zero page pointers so that
DOS can save the machine code along
with the modified program.

5. SAVE the modified program to disk.

DiskEdit BASIC program

1@ TEXT: HOME: GOSUB 215@: GOTO 758

2@ REM CLEAR TEXT WINDOW

3@ POKE 35,21: HOME: RETURN

4@ REM GET CHARACTER WITH PROMPT

5@ POKE - 16368,0

6@ GET N$:KY = ASC (N$) + 128: IF KY
<> 155 THEN RETURN

7@ REM RESET ALL DEFAULTS

8@ POKE TR,TS: POKE SC,5S: POKE
CM,RD:TK = TS:5E = S§S: CALL TT:
CALL MV

9@ REM CLEAR STACK, GOTO CMD PARSER

100 CALL - 10621: GOTO 750

11@ REM MAKE NOISE AND RETURN

120 PRINT G$G%;: RETURN

13@ REM FIND BINARY START

14@ IF PEEK (1@24) = 164 THEN 19@

15@ REM FOR DECIMAL NUMBER

160 A1 = PEEK (1@024) - 176:A2 = PEEK
(1025) - 176z IF A2 > — 1 THEN
GOSUB 40B:A1 = KY:A2 = PEEK
(1026) - 176: IFA2 > = 1 THEN
GOSUB 40@: RETURN

178 XY = A1: RETURN

18@ REM FOR HEX NUMBER

198 KY = PEEK (1@25): GOSUB 28@:A1 =
KY:KY = PEEK (10826): GOSuB
28@:A2 = KY:KY = A1 * 16 + A2:
RETURN

208 REM GET KEY WITHOUT PROMPT

210 KY = PEEK (- 16384): IF KY <128
THEN 210

220 POKE - 16368,0: RETURN

230 REM HANDLE AN ERROR

240 A1 = PEEK (EF): GOSUB 3@:
VTAB12: HTAB 12: IF A1 = 16 THEN
PRINT "UNABLE TO WRITE": GOT0260@

250 PRINT "DISK DRIVE ERROR'"

260 PRINT GG;: FOR X = 1 TO 1008:
NEXT: POKE EF,B@: POKE 35,24:
CALL MV: GOTO 8@

27@ REM PROCESS HEX/DEC INPUT

280 KY = KY — 1762 IF KY < @ OR KY >
22 THEN KY = 128: RETURN

290 IF KY > @ THEN KY = KY - 7: IFKY
< 1@ OR KY > 15 THEN KY =128

300 RETURN

31@ REM GET HEX OR DEC ONLY

320 GOsuB 5@

33@ IF KY = 141 THEN RETURN

340 GOSUB 280

35@ IF KY = 128 THEN GOSUB 12@0: GOTO
320

36@ IF PEEK (HF) AND KY > 9 THEN
GOSUB 120: GOTO 320

370 RETURN

380 REM CALCULATE HEX/DEC NO.

298 IF NOT PEEK (HF) THEN KY =A1 #
16 + A2: RETURN

400 KY = A1 « 18 + A2: RETURN

410 REM GET TRACK VALUE

420 VTAB 22: HTAB 14 - PEEK (HF):
GOSUB 328: IF KY > 15 THEN KY =
TK: GOTO 480

430 l;@NOT PEEK (HF) AND KY >2 THEN
&4

440 IF KY > 3 THEN 488

450 A1 = KY: PRINT N$;: GOSUB 320:
IF KY > 15 THEN KY = A1: GOT0488

460 A2 = KY: GOSUB 390

470 REM CHECK FOR VALID TRACK#

4B@ IF KY < @ OR KY > 34 THEN PRINT
G$;: GOTO 420

49@ REM SAVE OLD TRK#, POKE NEW

58@ TS = TK:TK = KY: POKE TR,TK:
CALLTT

510 REM GET SECTOR VALUE

520 VTAB 22: HTAB 21 - { PEEK (HF))
* 2: GOSUB 320: IF KY >15 THEN
KY = SE: GOTO 620

530 REM CHECK FOR HEX 1/0

54@ IF NOT PEEK (HF) THEN 620

The Best of Hardcore Computing Page 3

55@ REM SAVE KEY

56@ IF KY > 1 THEN 628

57@ REM GET ANCTHER KEY

580 A1 = KY: PRINT N$;: GOSUB 32@:
IF KY > 15 THEN KY = A1: GOTO 620

59@ REM CHECK FOR VALID SECTOR#

608 A2 = KY: GOSUB 39@: IF KY < @ OR
KY > 15 THEN PRINT G$;: GOTO 520

610 REM SAVE OLD SCT#, POKE NEW

620 ss = SE:SE = KY: POKE SC,SE:
CALLTT

63@ REM IF WRITE THEN LAST CHANCE

640 IF PEEK (CM) = WR THEN VTAB24:
HTAB 2: PRINT "PRESS RETURN TO
=>"=: FLASH : PRINT "WRITE";:
NORMAL : PRINT "'<-, ESC TO
EXIT"GS; : NORMAL : POKE -
16368,0: GOSUB 21@: IF KY <>
141 THEN 8@

650 GOTO 71@

660 REM PRINT 4@ "="'S

67@ FOR X = 1 TO 4@: PRINT "=";:
NEXT : RETURN

680 REM PRINT SCREEN PROMPTS

690 CALL TT

7@@ REM READ OR WRITE A SECTOR

710 CALL IO

720 REM PRINT BUFFER TO SCREEN

73@ CALL MV: RETURN

740 REM COMMAND PARSER

750 POKE 216,@: CALL TT: VTAB 23:
HTAB 1: CALL - 958: IF PEEK(EF)
> @ THEN GOSUB 24@

760 REM SAVE CURRENT TRACK/SECTOR

77@ TS = PEEK (TR):SS = PEEK (SC):TK
= TS:SE = §5

780 CALL XC:KY = PEEK (225) - 192

79@ IF KY = - 5 OR KY = - 21 THEN138@

80D IF KY <@ OR KY > 26 THEN 758

81@ ON KY GOsus 1@@,187@,1830,100,
1400,840,1450 ,100,100,100,100,
100,100,100,1590,1480,100,420,
1680,100,100,100,1720,1740,100
,100: GOTO 750

820 PRINT G$;: GOTO 750

83@ REM *** DEFINE FILTER *#w

B4D TEXT : HOME : VTAB 22: HTAB7:
PRINT "'CONFIGURATION FOR FILTER
#" PEEK (FL)

850 VTAB 2: PRINT G$"# BLOCK

CHG: FN# CHR$ STATUS!

86@ PRINT

870 DL = PEEK (231) + PEEK (232) *
256 - 1:CG = PEEK (233) + PEEK
(234) * 256 - 1

880 FI = PEEK (FL)

890 REM PRINT CURRENT VALUES

908 FOR X = 1 TO B: PRINT X".
llFs(x)" - lf;

910 F = PEEK (CG + X)

92@ F1 = INT (F / 32) + X: IF F1 > 8
THEN F1 = F1 - 8

930 F2 = F — (INT (F / 32) * 32)
94@ F3 = PEEK (DL + X)
950 F4 = PEEK (NO + FI)

9608 F1(X) = F1:F2(X) = F2:F3(X) =F3
+ (FCF1) * (F2 <> @) +(F(X) *
(F2 = 8))

97@ PRINT F1'. "F$(F1);: HTAB 23:
PRINT F2;: HTAB 27: POKE
2091,F3: CALL HP:z CALL AP: IFX <
> 1 THEN 1000

980 HTAB 36: IF F4 = 1 THEN PRINT"ON

99@ IF F4 = @ THEN PRINT "OFF";

10@@ PRINT : PRINT : NEXT

101@ REM EDIT CURRENT VALUES

1020 FOR X =1 TO 8: VTAB X * 2 +2:
HTAB 12

1030 REM GET BLOCK #

1040 GOSUB 5@:A = KY - 176: IF N$ =
CHRS (13) THEN A = F1(X):N$ ="

1850 IF A <1 OR A > B8 THEN PRINTGS;:
GOTO 1040

1@6@ PRINT N%;: HTAB 15: PRINT
F${A);: HTAB 23

1078 € = F2(X)

1380 REM CALCULATE OFFSET

1098 IF A > =X THEN F = A - X

11@8 IF A < X THEN F = (8 - X) +A

111@ POKE CG + X,F % 32 + C

112@ REM GET FUNCTION #

113@ GOSUB 5@:C = KY - 176: IF N$ =
CHRS (13) THEN C = F2(X):N§ = """

1140 IF C <@ OR C > 3 THEN PRINTGS;:
GOTO 1138

1158 PRINT N%;

1160 REM CHANGE FILTER VALUE

117@ POKE CG + X,F * 32 + C

118@ KY = F3(X): IF C = @ THEN KY = @

119@ IF C <1 OR C = 3 THEN 1270

120@ VTAB 2@: HTAB 1: PRINT "ENTER
CHARACTER: ";: GOSUB 5@: IFKY =
141 THEN KY = F3(X)

1210 IF KY < 16@ OR KY > 223 THEN
PRINT G$;: GOTO 1200

1220 IF KY < 192 THEN KY = KY +(2 +
A) » 32: GOTO 124@

1230 IF KY > 191 THEN KY = KY + (1 +
A) * 32

124@ KY = KY - 256: HTAB 1: CALL -
868: VTAB X * 2 + 2

1250 POKE DL + X, KY

126@ HTAB 27: POKE 2091,KY: CALLHP:
CALL AP

127@ NEXT

1280 REM GET FILTER STATUS

129@ PRINT : PRINT : PRINT "LEAVE
FILTER ON DURING EDIT? (Y/";:
INVERSE : PRINT "N';: NORMAL:
PRINT "): '"G$;: GOSUB 5@

1300 HTAB 1: CALL — B68: VTAB 4:
HTAB 36: IF N$ = "Y' THENA = 1:
PRINT "ON '";: GOTO 13208

131@ PRINT “OFF'";:A =@

132@ POKE NO + FI,A

1330 REM RESTORE SCREEN, EXIT

1348 FOR X = 1 TO 50@: NEXT

135@ GOTO 730

136@ REM ++EDIT++ MODE ENTRY POINT

1370 IF FI = @ THEN RETURN

1380 VTAB 24: HTAB 2: INVERSE :
PRINT'"++EDIT++';: POKE NC,0:
GOTO141@

139@ REM EDIT MODE ENTRY POINT

1400 VTAB 24: HTAB 2: INVERSE :
PRINT'>>EDIT<<"";: POKE NC,1

141@ NORMAL : HTAB 12: PRINT
"MODE"'; :

1420 PRINT "
EXIT;

143@ CALL ED: VTAB 23: HTAB 1: CALL
- 958: GOTO 80

144@ REM TURN SOUND ON/OFF

1450 PRINT G$;: IF G$ = CHR$S (7)
THEN G$% = "'"": RETURN

1468 G$ = CHR$ (7): RETURN

1470 REM *+*+* PRINT HARDCOPY *¥#

1480 IF NOT PR THEN GOSUB 1760

1490 GOSUB 3@

PRESS <ESC> TO

150@ A1 = PEEK (BF) * 256 - 1

151@ PR# PR: PRINT

1520 PRINT "TRACK: '';: POKE NM,TK:
CALL HX: PRINT " SECTOR:'";: POKE
NM,SE: CALL HX: PRINT" VOLUME: "
PEEK (VO

153@ FOR X = @ TO 255 STEP 16 /LI:
POKE NM,X: CALL HX: HTAB5: PRINT

1540 FOR A =

17016 / LI: POKE2091,

PEEK (A1 + X + A): CALLHP: NEXT

1550 FOR A =1 TO 16 / LI: POKE2091,

PEEK (A1 + X + A): CALLAP: NEXT
1568 PRINT : NEXT

1578 PR# @: GOTO 8@

1580 REM #*% JUMP CURSOR #*x+*

159@ VTAB 22: HTAB 32 - PEEK (HF):
GOSUB 32@: IF KY > 15 THEN CALL
TT: RETURN

16@0@ A1 = KY: PRINT N$;: GOSUB 320:
IF KY > 15 THEN KY = A1:
GOTO1660

161@ A2 = KY: PRINT N$;: GOSUB 39@:
IF NOT PEEK (HF) THEN 166@

1628 IF KY > 25 THEN 1668

163@ A1 = KY: GOSUB 320: IF KY >15
THEN KY = A1: GOTO 166@

164@ A2 = KY: PRINT N$;: GOSUB 398:
IF XY <@ OR KY > 255 THEN CALL
TT: GOTO 159@

165@ REM CALCULATE NEW CURSOR POSN

1660 POKE CS,KY: CALL MV: CALL TT:
RETURN

1670 REM CHANGE SLOT NO.

168@ VTAB 22: HTAB 4: GOSUB 320: IF
KY > 15 THEN CALL TT: RETURN

1690 IF KY < 1 OR KY > 7 THEN 1680

1700 POKE SL,KY * 162 CALL TT:
RETURN

1710 REM WRITE A TRACK/SECTOR

1720 POKE CM,WR: GOSUB 420:
POKECM,RD: CALL TT: RETURN

173@ REM CLEAR SCREEN, RECONNECT DOS
AND EXIT TO BASIC

1740 TEXT : HOME : POKE 1@3,1:
POKE1@4,8: CALL 10@2: END

175@ REM FIND PRINTER SLOT

1768 GOSUB 3@: VTAB 12: PRINT "WHICH
SLOT IS YOUR PRINTER USING? 1-7
t-: GOSUB 32@: IFKY > 15 THEN
RETURN

177@ IF KY > 7 THEN GOSUB 12@:
GOTO1760

1780 IF NOT KY THEM RETURN

1790 PR = KY:LI = 2

1800 PRINT : PRINT := PRINT
TAB(&)""PRINT USING B@ COLUMNS
(Y/";: INVERSE : PRINT "N'";:
NORMAL: PRINT "):";: GOSUB 5@:
IFN$ = "Y'" THEN LI =1

1810 RETURN

1820 REM CALL FOR CATALOG

1830 CALL 18@2: ONERR GOTO 185@

1840 GOSUB 3@: PRINT : PRINT
CHR$(4)"CATALOG, D' PEEK (DR)",S"
PEEK (SL) / 16: PRINT : CALLFR:
POKE 35,24: VTAB 24: HTABY:
PRINT '""PRESS ANY KEY TO CONTINUE
v.x GOSUB 21@: GOTO730

185@ POKE 216,@: GOTO 240

1860 REM DISASSEMBLE THE BUFFER

1870 GOSUB 3@: VTAB 21: PRINT :
PRINT:KY = PEEK (CS)

1880 REM START AT CURSOR

189@ POKE S8,KY: POKE 59, PEEK (BF)

The Best of Hardcore Computing Page 4

1900 A1 = @:A2 = 21 100
191@ REM START AT LAST BYTE 110
1920 FOR X = 1 TO A2: IF PEEK (59) > 120
PEEK (BF) THEN :A1 =1: IF PEEK 130
(1152) < > 160 THEN PRINT : GOTO 140
2090 150
1930 IF A1 THEN PRINT : NEXT : 160
GOT02090 170
1940 CALL BI 180
1950 NEXT 190
196@ REM <ESC> KEY? = EXIT 200
1970 GOSUB 210: IF KY = 155 THEN2130 ,
1980 REM <RTN> KEY? = 20 LINES S50
1990 IF KY = 141 THEN 1500 230
200@ REM <SPACE> KEY? = 1 LINE 540
2010 IF KY = 16@ THEN A2 = 1: 550
GOT01920 260
2020 IF KY = 213 THEN GOSUB 14@: 570
GOSUB 155@: VTAB 1: GOTO 1890 280
2030 IF KY < > 208 THEN 1970 590
2040 REM PRINT SCREEN 300
2050 GOSUB 14@:L = KY 310
2068 IF NOT PR THEN GOSUB 1760 320
2070 HOME :KY = L: PR# PR: GOT01890 330
2@8@ REM PRINT EXIT MESSAGE 340
209@ PRINT "END OF BUFFER PRESS 350
RETURN TO CONTINUE';: GOSUB21@ 360
2100 REM LAST CHANCE TO PRINT 370
2110 IF KY = 208 THEN 2050 380
2120 REM EXIT BINARY ROUTINE 390
2138 PRINT : POKE 35,24: PR# O: 400
GOTO730
2140 REM DEFINE VARIABLES 410
2150 RD = 1:WR = 2:LI = 2 420
2160 SL = 2071:DR = 2072:V0 = 430
2084:TR = 2074:SC = 2075:CM = 440
2082 450
2170 NM = 2091:FL = 2101:EF = 460
2094:HF = 2095:CS = 21@0:8F = 470
2103 480
2188 NC = 2099 490
2190 FI = PEEK (FL) 52“
2200 NO = PEEK (21@6) + PEEK (2107) gzg
* 256
2210 10 = 2111:MV = 2114:HX = ggg
2117:ED = 2120:BI = 2123:FR = Feh
2126:TT = 2129:XC = 2135 580
2220 HP = 2141:AP = 2144 570
2230 F$C1) = "INVI":F$(2) = 580
MINV2U:F$(3) = YFLS1''IF$(4) = 590
MELS2":F$(5) = "CTRL":F$(6) = 500
YNOR1":F$(7) = ""NOR2'":F$(8)
=IIL/C " 610
2240 FC1) = 192:F(2) = 128:F(3) 620
=128:F(4) = 64:F(5) = 64:F(6) = 630
@:F(?) = D:F(8) = - 64 640
2250 G$ = CHRS (7) 650
226@ VTAB 8: PRINT "D I S K E DI 660
T VERSION 4,0 670
PRINT ' COPYRIGHT 1981 (C) HARD 680
CORE COMPUTIST"': PRINT 690
2270 HTAB 5: FOR X =1 TO 32: 700
PRINT"~"";: NEXT : PRINT : HTAB 710
é: PRINT "A DISK EDITING UTILITY 720
PROGRAM"' 730
2280 HTAB 5: FOR X = 1 TO 32: 740
PRINT"-"';: NEXT : PRINT : PRINT 750
2290 VTAB 22: PRINT "INSERT DISK ~-- 760
PRESS ANY KEY TO CONTINUE';: 770
GOSUB 21@: VTAB 22: CALL - 958: 780
GOTO 730 ggg
Baslc Checksums
10 -$DA54 40 -$6989 70 -$50BF 810
20 -$36E1 50 -$94C6 80 -$97E3 820
30 -$B237 60 -$195A 90 -$0D4D 830

- $2BF8
- $4A45
- $B662
- $E036
- $492A
- $2087
-$E1C7
- $E57B
- $0D6C
- $01C7
-$C136

- $AF97
- 89409
- $ATBO
- $BBF7
- $91AA
- $3863
- $FFFA
- $6A18
- $5E94
- $3719
- $AD76
- $FCCO
- $CFF1
- $0EDA
- $C818
- $E4F0
- $6B10
- $48F9
- $AE6BB
- $D00B

- $463D
- $4D8C
- $76B7
- $0448
- §ECA7
- $D9BC
- $6CDA
- $034E
- $76EA
- $180F
- $2B9D
- $5F64
- $F31D
- $4BA1
- §52A1
- $262D
- $F656
- $1cce
- $A588
- $A0D7

- $B4AD
- $F38A
- $5527
- §12A1
- $699F
- $4C4A
- $AB33
- $BOBE
- $A705
- $6ECC
- $5AB1
- $5243
- $7825
- $56B3
- $34CF
- $042D
- $B88D
- $ADCY
- $B478
- $88BCAS5

- $3FAD
- $873F
- $B65C

840
850
860
870
880
890
900
910
920
930
940
850
960
970

- $9016
- $7702
- $TFET
- §5F47
- $356C
- $292A
- $AA2F
- $D306
- $4C2F
- $9EB4
- §7ABT
- $00E8
- $E3C5
- $7990
980 - $BFC8
990 - $34C7
1000 - $A45A

1010 - $6FC7
1020 - §1551
1030 - $1D31
1040 - $2DB9
1050 - $6113
1060 - $BED2
1070 - $15A5
1080 - $C1BA
1090 - $2FDA
1100 - $7199
1110 - $6F5A
1120 - §724A
1130 - $7D0C
1140 - $6B09
1150 - $42D5
1160 - $0968
1170 - $955E
1180 - $6291
1190 - $D5B3
1200 - $E778

1210 - $8F98
1220 - $90CF
1230 - $3A4E
1240 - $3512
1250 - $203A
1260 - $2762
1270 - $82AD
1280 - $830C
1280 - $4F4E
1300 - $57C5
1310 - $6818B
1320 - $5BDA
1330 - $1822
1340 - $FBFY
1350 - SE3BA
1360 - $402F
1370 - $CBGH
1380 - $F7F2
1390 - $80F8
1400 - $A915

1410 - $AC24
1420 - §433F
1430 - $5690
1440 - $5AE2
1450 - $F406
1460 - BFB7A
1470 - $1013
1480 - $63B2
1490 - $A314
1500 - $5D9F
1510 - $96EA
1520 - $4CF7
1530 - $BB1E
1540 - §9C93
1550 - §7F79
1560 - $B78D
1570 - $6BF7
1580 - $7EBSB

1590 - $8164
1600 - $934D

1610 - $A881
1620 - $CSHAE
1630 - $426C
1640 - $454B
1650 - $3ACS
1660 - $0694
1670 - $D136
1680 - $47A7
1690 - $EA2E
1700 - SAFAE
1710 - $6B9B
1720 - $438E
1730 - §1B69
1740 - $5F78
1750 - $80C8
1760 - §F861
1770 - 3481A
1780 - $77C0
1790 - $263A
1800 - §7F75

1810 - $AD1B
1820 - $D0C7
1830 - $DB38
1840 - $CCB6
1850 - $086F
1860 - $3C82
1870 - $5970
1880 - SATOF
1890 - $53AB
1900 - $166B
1910 - $7051
1920 - 50803
1930 - $BA2B
1940 - §3C4D
1950 - $6E63
1960 - $80CA
1970 - $8A49
1980 - §72C8
1990 - $6CCD
2000 - 6650

2010 - $46CC
2020 - $C93C
2030 - $0CB8
2040 - $671E
2050 - $3CCF
2060 - $DOF2
2070 - $7564
2080 - $7AEB
2080 - $7654
2100 - $C2A5
2110 - $F66F
2120 - $E585
2130 - $7DBO
2140 - $4EAE
2150 - $7885
2160 - $CDEB
2170 - $69CC
2180 - $07E6
2190 - $67A6
2200 - $C651

2210 - §5F3F
2220 - $00CD
2230 - SAABA
2240 - $99F1
2250 - $051B
2260 - $FDO1
2270 - $CD77
2280 - §373F
2290 - §2892

DiskEdit Source Code

0005 Ll

0010

0015 + DISKEDIT Il - VERSION 4.1
0020 * GOPYRIGHT 1981 SOFTKEY
0025 * LAST UPDATED MAR 24 84

0030

0035 OR $800

0040 TF EDO

0045

0050 WNDTOP EQ $22

0055 WNDBTM EQ $23

0060 CH EQ $24

0065 CV EQ $25

0070 BASE2 EQ $26,27

0075 BASE1 EQ $28.20

0080 PCL EQ $3A,38

0085 I0BPL EQ $48

0090 PRGSTR EQ 67

0095 LOC EQ $EO

0100 NUM EQ $E

0105BUFPNTR .EQ $E4

0110 DCHR EQ $ETEB

0115 CFLT EQ SEQEA

0120 RWTS £Q $3D8

0125 GETIOB EQ $3E3

0130 KEY EQ $C000

0135 STROBE EQ $C010

0140 VTOC EQ $B3F2

0145 LINPRT EQ $ED24

0150 INSDS EQ $F88C

0155 INSTDS [EQ $F8D3

0160 PRBLANK EQ $F94A

0165 PCADJ EQ §F953

0170 HOME EQ $FC58

0175 CRLLF EQ SFC62

0180 PRHEX EQ $FDDA

0185 COUT .EQ $FDED

0190 * CHARAGTER CODES
0195 CTRL.AT EQ $80

0200 CTRL.A EQ $81

0205 CTRL.B EQ $82

0210 CTAL.D EQ $84

0215 CTRLF EQ $86

0220 CTRLH EQ $88

0225 CTRL.I EQ $89

0230 CTRL.L EQ $8C

0235 RETURN EQ $8D

0240 CTRL.N EQ $8E

0245 CTRL.Q EQ $91

0250 CTRL.U EQ $95

0255 CTRL.Z EQ $9A

0260 ESCAPE EQ $9B

0265 SPACE EQ $AD

0270 STAR EQ $AA

0275 PERIOD EQ SAE

0280 FIVE EQ $BS

0285 LTR EQ $C9

0290 LTR.J EQ $CA

0295 LTR.K EQ $CB

0300 LTR.M EQ $CD

0305

0390 dssimsimnmniens —1ST LINE OF BASIC PROGRAM
0315

0320 START HS 00110800008C3230
0326 HS 36373AAB31303AB2
0330 HS 000000

0335 JMP INITDOS

0340

0345 INPUT/OUTPUT BLOCK
0350

0355 I0BIND HS 01

0360 SLOT HS 60 SLOT * 16
0365 DRIVE HS 01 DRIVE #
0370 EXPVOL HS 00 REQ. VOLUME
0375 TRACK HS 00 TRACK #
0380 SECTOR HS 00 SECTOR #
0385 DA DCT

0390 DA BUFFER

0395 HS 0000

0400 CMND HS 01 COMMAND
0405 ERCODE HS 00 ERROR CODE
0410 VOLUME HS 00 VOLUME #

The Best of Hardcore Computing Page 5

0415 OLDSLOT .HS 60 PREY. SLOT
0420 OLDRIVE HS 01 PREV. DRIVE
0425

0430 DCT .HS 00 TYFE CODE
0435 PHASES HS 01 PHASES/TRK
0440 .HS EFD8 TIME COUNT
0445

0450 * BASIC variables
0455

0460 BYTE .HS 00 NM

0465 OLOTRK HS 00 a7

0470 OLDSCT .HS 00 08

0475 ERRFLG .HS 00 EF

0480 HEX.OR.DEC.FLG .HS 00 HF

0485 ON.OFF HS 01 ST

0490 CFLG HS 01 PF

0495 HS 00

0500 USE.CTRL.CHARS .HS 00 TH

0505 CRSVAL HS 00 cs

0510 FLTNUM HS 01 FL

0515 HS 00

0520 DA /BUFFER BF

0525 HS 0000

0530 DA FSTAT NO

0535 HS 000000

0540

0545 » BASIC Call table
0550

0555 JMP CALLIO 10

0560 JMP PRINT.SCREEN.DATA

0565 JMP HXBYTE

0570 JMP EDIT ED

0575 JMP BINARY Bl

0580 JMP CALC.FREE SECTORS

0585 JMP PROMPT

0590 JMP PROMPTO ™

0595 JMP PARSE XC

0600 JMP FILTERD HC

0605 JMPHEXPRINT HP

0610 JMP ASCPRINT AP

0615 JMP RIGHT UNUSED
0620 HS 606060 UNUSED
0625

0630 * INTEANAL VARIABLES
0635

0640 OFFSET HS 00

0645 FIRST HS FF

0650 EDFLG HS 01

0655 HCOUNT HS 00

0660 SPACES HS 00

0665 EDIT.MODE.FLAG .HS 00

0670 KEYFLG HS 01

0675 MAXSCT HS 10

0680 MAXTRK HS 23

0685 SPECIAL.FUNCTION HS 00

0690

0695 Get DOS pointers
0700

0705 INITDOS JSR GETIOB

0710 STY 10BPL

0715 STA 10BPL+1

0720 LDY #1

0725 LDA (IOBPL),Y

0730 STA SLOT

0735 INY

0740 LDA (IOBPL).Y

0745 STA DRIVE

0750 = Reset program pointer
0755 LDA #STOP.

0760 STA PRGSTR

0765 LDA /STOP

0770 STA PRGSTR+1

0775 RTS

0780

07B5 *omemmememmmemem e Call Read/Write Track Sector
0790

0795 CALLIO LDA A0BIND

0800 LDY #I0BIND

0805 JSR RWTS

0810 BCC 1

0815 LDA ERCODE GET ERROR #
0820 STA ERRALG

0825 1 ATS

0830

0835 » Put buffer here

0840

0845 BS $500-%

0850 BUFFER 8BS $100 256 bytes
0855

0860 * Disassemble an instruction
0865

0870 BINARY LDA #RETURN

0875 JSR COUT PRINT <CR>
0880 LDA PCL

0885 STA BYTE

0890 JSR HXBYTE

0895 STEP LDA #4

0900 STA CH

0905 LDA #$AD

0910 JSR COUT Print dash
0915 LDX #1 and a
0920 JSR PRBLANK space.
0925 JSR INSDS Disassem
0930 JSAR INSTDS current
0935 JSR PCADJ instr.
0940 STA PCL & update
0945 STY PCL+1 prg cntr.
0950 RTS

0955

0960 *» Select a filter
0965

0970 PRINT.SCREEN DATA

0975

0980 LDA FLTNUM

0985 ASL

0990 ASL

0995 TAX

1000 LDY #0

1005 1 LDA FLT.LOC,X

1010 STA DCHR,Y

1018 INX

1020 INY

1025 CPY #4

1030 BCC 1

1035

T040 Hancrmmmemmmemmmnm e Print buffer data to screen
1045

1050 LDA #0

1055 STA BUFFNTR

1060 STA OV

1065 .2 JSR PRINT.OLD.LINE

1070 ING CV

1075 LDA CV

1080 CMP #20 Last line?
1085 BNE .2 No!
1090 LDA GV

1095 JSR FIND BASE.ADDR

1100 LDY #39

1105 LDA #SPACE

1110 .3 STA (BASE1),Y

1115 DEY

1120 BPL .3

1125 JMP PROMPT

1130

1135 » Memory locations for fext scrn

1140

1145 TEXT.SCREEN.BYTE

1150

1155 DA $400 Line 1
1160 DA $480

1165 DA $500

1170 DA $580

1175 .DA $600

1180 .DA $680

1188 .DA §700

1190 DA $780

1195 DA $428

1200 .DA $4AB

1205 DA $528

1210 .DA $5A8

1215 DA $628

1220 .DA $6A8

1225 DA §728

1230 DA $7A8

1235 DA $450

1240 DA $4D0

1245 DA 8550

1250 DA $500

1255 DA $650

1260 DA $600

1265 D& §750

1270 DA $700 Line 24
1275

1280

1285 * Enter with line# in AGC.
1290

1285 FIND.BASE ADDR

1300

1305 ASL

1310 TAX

1315 LDA TEXT.SCREEN.BYTE,X
1320 STA BASE1

1325 CLC

1330 ADC #27

1335 STA BASE2

1340 LDA TEXT.SCREEN.BYTE+1X
1345 STA BASE1+1

1350 STA BASEZ+1

1355 RTS

1360

1365 # Convert CRSVAL to line#
1370

1375 FIND.CURRENT.LINE

1380

1385 LDX #20

1390 1 DEX

1395 LDA FIRST.CHAR.POSN X
1400 CMP CRSVAL

1405 BCC .2

1410 BEQ .2

1415 JMP 1

1420 2 STX CV

1425 STA BUFPNTR

1430 RTS

1435

1440 FIRST.CHAR.POSN

1445

1450 .HS 000D1A2734414E
1455 HS 5B6875828FICA9
1460 HS B6C3DODDEAFT
1465

1470 PRINT.NEW.LINE

1475

1480 JSR FIND.CURRENT.LINE
1485

1490 PRINT.OLD.LINE

1495 1

1500 LDA CV

1505 JSR FIND.BASE ADDR
1510 LDA #13

1515 STA HCOUNT

1520 LDX BUFPNTR

1525 2 LDA BUFFER,X

1530 PHA

1535 CPX CRSVAL

1540 BNE 3

1545 LDX KEYFLG

1550 BEQ 4

1555 .3 JSR FILTER

1560 4 LDY #0

1565 STA (BASEZ2)Y

1570 INC BASEZ

1575 PLA

1580 LDX KEYFLG

1585 BEQ .9

1590 PHA

1595 LSA

1600 LSR

1605 LSR

1610 LSR

1615 LDX BUFPNTR

1620 CPX CRSVAL

1625 BNE .5

1630 ORA #$30

1635 CMP #$3A

1640 BCC .6

1645 SBC #$39

1650 JMP 6

1655 .5 ORA #$B0

1660 CMP #3BA

1665 BCC .6

1670 ADC #$06

1675 6 STA (BASE1).Y

1680 INC BASE1

1685 PLA

The Best of Hardcore Computing Page 6

1690
1695
1700
1705
1710
1715
1720
1725
1730
17356 .7
1740
1745
1750
1755 .8
1760
1765 .
1770
1775
1780
1785
1790
1795 .10
1800
1805
1810
1815
1820
1825
1830
1835 .1
1840
1845
1850
1855
1860
1865
1870
1875 .12
1880
1885

L<=]

AND #$0F
LDX BUFPNTR
CPX CRSVAL
BNE .7

ORA #$30
CMP #$3A
BCC .8

SBC #$39
JMP 8

ORA #3B0
CMP #3BA
BCC .8

ADC #5306
STA (BASE1),Y
INC BASE1
INC BUFPNTR
LDX BUFPNTR
BEQ .10

DEC HCOUNT
LDA HCOUNT
BNE 2

LDX KEYFLG
BEQ .12

LDA #3A0
STA (BASE1),Y
LDX GV

CPX #19

BNE .12

LDA #SPACE
STA (BASE2),Y
STA (BASE1),Y
INC BASE1
STA (BASE1),Y
INY

CPY #4

BNE .11

STA (BASE1),Y
RTS

1890

1895 CALC.FREE.SECTORS

1900
1905
1910
1915
1920
1925 NXTBYTE
1930 NXTBIT
1935 .1

1840

1945

1950

1955

1960

1965 .2

1870

1975

1980 .3

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030 FSTEXT
2035
2040 *

LDA #3500
STA NUM

STA NUM+1
LDY #3C8
LDA VTOC,Y
BEQ .2

ASL

BCC NXTBIT
ING NUM

BNE .1

INC NUM+1
BNE 1

DEY

BNE NXTBYTE
LDX #15

LDA FSTEXT-1,X
JSR COUT
DEX

BNE .3

LDX NUM

LDA NUM+1
JSR LINPRT
LDA #RETURN
JSR COUT
RTS

AS -"'= EERF SROTCES "'

2045
2050 FILTERD
2055 FILTER
2060
2085
2070
2075
2080
2085
2090
2085
2100
2105
2110

LDA BYTE
STA LOC
LSR

LSR

LSR

LSR

LSR

TAY

LDA (CFLT),Y
TAX

AND #$FO0
CLC
ADC LOC

Screen character filter 2465

2115 STA LOC
2120 TXA
2125 AND #S0F
2130 BME .2
2135 1 LDA LOC
2140 RTS
2145
2150 * Select function
2155
2160 .2 CMP #1 Function 17
2165 BNE 4
2170 LDA (DCHR),Y
2175 CMP LOC
2180 BNE 1
2185 .3 LDA #SPACE
2190 RTS
2185 4 CMP #2 Function 27
2200 BNE 5
2205 LDA (DCHR).Y
2210 CMP LOC
2215 BEQ 1
2220 BNE .3
2225 5 CMP #3 Function 3?
2230 BEQ .3
2235 JMP 1
2240
2245
2250 * Filter parameter data
2255
2260 CHGO BS 8
2265 CHG1 BS 8
2270 CHG2 .HS CD808040800000ED
2275 CHG3 .HS C1818141810101E1
2280 CHG4 .HS C0808040010000E0
2285 CHGS HS 02020202C00040E0
2290 CHGe .HS 0000000000000000
2295 CHG7 .HS C0808040800000ED
2300 CHG8 BS 8
2305 CHGY BS 8
2310
2315 *
2320
2325 DELO BS 8
2330 DEL1 BS 8
2335 DEL2 BS 8
2340 DEL3 .HS COAOCOADOOADCOCO
2345 DEL4 BS 8
2350 DEL5 B5 8
2355 DEL6 BS 8
2360 DEL7 BS 8
2365 DEL8 BS 8
2370 DEL9 .BS 8
2375
2380 * FILTER STATUS 1=0N
2385
23590 FSTAT HS 00 FILTER #0
2395 HS 000000000100000000
2400
2405 *— FILTER PARM LOCATIONS
2410
2415 FLT.LOC DA DELD
2420 DA CHGOD
2425 DA DEL1
2430 DA CHG1
2435 DA DEL2
2440 .DA CHG2
2445 .DA DEL3
2450 .DA CHG3
2455 .DA DEL4
2460 .DA CHG4
.DA DEL5
2470 .DA CHG5
2475 DA DEL6
2480 DA CHGE
2485 .DA DEL7
2490 DA CHG7
2495 DA DEL8
2500 DA CHGB
2505 .DA DEL9
2510 .DA CHG9
2515
2520 * Print screen prompts
2525
2530 PROMPTO LDA OLDTRK
2535 STA TRACK

2540 LDA OLDSCT

2545 STA SECTOR

2550 PROMPT LDA #21

2555 JSR FIND BASE ADDR
2560 LDY #0O

2565 .1 LDA PROMPT1.Y
2570 STA (BASE1).Y

2575 INY

2580 CPY #3

2585 BCC 1

2590 LDA SLOT

2595 LSR

2600 LSR

2605 LSR

2610 LSR

2615 ORA #3B0

2620 STA (BASE1),Y

2625 INY

2630 .2 LDA PROMPT1Y
2635 STA (BASE1),Y

2640 INY

2645 CPY #8

2650 BCC .2

2655 LDA DRIVE

2660 ORA #8$B0

2665 STA (BASE1),Y

2670 INY

2675 3 LDA PROMPT1,Y
2680 STA (BASE1),Y

2685 INY

2690 CPY #12

2695 BCC 3

2700 LDA TRACK

2705 JSR PRINT.HEX.OR.DECIMAL
2710 .4 LDA PROMPT1,Y
2715 STA (BASE1).Y

2720 INY

2725 CPY #18

2730 BCC .4

2735 LDA SECTOR

2740 JSR PRINT.HEX.OR.DECIMAL
2745 .5 LDA PROMPT1Y
2750 STA (BASE1),Y

2755 INY

2760 CPY #24

2765 BCC 5

2770 LDA VOLUME

2775 JSR PRINT.HEX.OR.DECIMAL
2780 6 LDA PROMPT1.Y
2785 STA (BASE1).Y

2790 INY

2795 CPY #30

2800 BCC 6

2805 LDA CRSVAL

2810 JSR PRINT.HEX.OR.DECIMAL
2815 .7 LDA PROMPT1.Y
2820 STA (BASE1),Y

2825 INY

2830 CPY #35

2835 BCC .7

2840 LDA FLTNUM

2845 ORA #$B0

2850 STA (BASE1),Y

2855 INY

2860 .8 LDA PROMPT1.Y
2865 STA (BASE1),Y

2870 INY

2875 CPY #37

2880 BCC 8

2885 LDX EDIT.MODE.FLAG
2890 9 LDA EDIT.MODE.TEXT X
2895 STA (BASE1),Y

2900 INY

2905 INX

2910 CPY #40

2915 BCC .9

2920 RTS

2925 =

2930 EDIT.MODE.TEXT

2935

2940 HS 080516011303090E
2945 HS 16060C130C2F03
2050

2955 PROMPT

2960

The Best of Hardcore Computing Page 7

2965 HS 130CBAAQAD SL
2970 HS 0412BAADAQ DR
2975 HS 14BAADADAOAD T
2980 HS 13BAADADADAD 8
2985 HS 16BAADADACAD V
2990 HS 02BAADADADAD B
2995 HS 06AOAOAOADAD F
3000

3005 *»

3010

3015 SET.HEX.OR.DEC

3020

3025 LDX #1

3030 CPX HEX.OR.DEC FLG
3035 BNE .1

3040 DEX

3045 1 STX HEX.OR.DEC.FLG
3050 JMP PROMPT

3055

3060 SWT.DRV LDX #1

3065 CPX DRIVE

3070 BNE .1

3075 INX

3080 .1 STX DRIVE

3085 JMP PROMPFT

3090 =

3095 FSET LDA LOC#+1

3100 SEC

3105 SBC #$B0

3110 STA FLTNUM

3115 JMP PRINT SCREEN.DATA
3120 »

3125 DEC.SCT DEC SECTOR

3130 BPL 10JMP

3135 LDX MAXSCT

3140 DEX

3145 STX SECTOR

3150 *

3155 DEC.TRK DEC TRACK

3160 BPL 10JMP

3165 LDX MAXTRK

3170 DEX

3175 STX TRACK

3180 I0JMP JSR CALLIO

3185 JMP PRINT.SCREEN .DATA
3180 «

3185 ING.SCT INC SECTOR

3200 LDX SECTOR

3205 CPX MAXSCT

3z210 BCC 10JMP

3215 LDX #0

3220 STX SECTOR

3225 *

3230 INC.TRK ING TRACK

3235 LDX TRACK

3240 CPX MAXTRK

3245 BCC 10JMP

3250 LDX #0

3255 STX TRACK

3260 BEQ 10JMP ...ALWAYS
3265

3270 ¥ s CURSOR MOVEMENT ROUTINE
3275

3280 LEFT JSR FIND.CURRENT.LINE
3285 DEC CRSVAL

3290 JMP CRS1

3295 =

3300 RIGHT JSR FIND.CURRENT.LINE
3305 INC CRSVAL

3210 JMP CR51

3315 *

3320 UP JSR FIND.CURRENT.LINE
3325 LDA CRSVAL

3330 SEC

3335 SBC #13

3340 BCS .2

3345 CMP #$FC

3350 BCG .1

3355 SBC #14

3360 1 ADC #4

3365 .2 STA CRSVAL

3370 CRS1 JSR PRINT.OLD.LINE
3375 JSR PRINT.NEW.LINE
3380 JSR PRTCRS

3385 LOX EDFLG

3390 BNE PARSE2

3385 RTS

3400

3405 *

3410 DOWN JSR FIND.CURRENT.LINE
3415 LDA CRSVAL

3420 CLC

3425 ADC #13

3430 BCC .2

3435 CMP #4

3440 BCS 1

3445 ADC #14

3450 1 ADC #SFB

3455 2 STA CRSVAL

3460 JMP CRS1

3465

3470 SET.HEX.EDIT

3475

3480 LDA #0

3485 SETMODE STA EDIT.MODE.FLAG
3490 JMP PROMPT

3495

3500 SET.ASCI|.EDIT

3505

3510 LDA #3

3515 BNE SETMODE ...Always
3520

3525

3530

3535 PARSE LDA TRACK

3540 STA OLDTRK

3545 LDA SECTOR

3550 STA OLDSCT

3555 PARSEZ2 LDX SPECIAL.FUNCTION
3560 BEQ .2

3565 DEX

3570 STX SPECIAL.FUNCTION
3575 .1 LDA KEY

3580 BPL .1

3585 JSR PRINT.SCREEN.DATA
3590 .2 JSR INKEY

3595 LDX #$FD

3600 .3 INX

3605 INX

3610 INX

3615 LDA \ALID.CMND.TABLE X
3620 BEQ 4

3625 CMP LOC

3630 BNE 3

3635 INX

3640 LDA VALID.CMND.TABLE+1.X
3645 PHA

3650 LDA VALID.CMND.TABLE.X
3655 PHA

3660 .4 RTS Bad Command
3665

3670 =

3675

3680 VALID.CMND.TABLE

3685 H5 C8 I
3690 .DA UP-1

3695 .HS CA J
3700 .DA LEFT-1

3705 .HS CB K
3710 .DA RIGHT-1

3715 .HS CD M
3720 .DA DOWN-1

3725 HS 88 <-
3730 .DA LEFT-1

3735 HS 95 -
3740 DA RIGHT-1

3745 HS AC

3750 DA DEC.TRK-1

3755 HS AE

3760 DA INC.TRK-1

3765 HSs B1 1
ar7o DA FSET-1

3775 HS B2 2
3780 DA FSET-1

3785 HS B3 3
3790 DA FSET-1

3795 HS B4 4
36800 .DA FSET-1

3805 .HS BS 5
36810 DA FSET-1

3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3880
3885
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945

3950 »
3955 CTALMY

3960
3985
3970
3975
3980
3985
3990

3885 .

4000
4005
4010
4015
4020

4025 .

4030
4035
4040
4045
4050

4055 .

4060
4065
4070
4075
4080

4085 .

4080
4095

4100 .

4105
4110

4115 .

4120
4125

4130 .

4135
4140
4145
4150
4155

4160 .

4165
4170

4175 .

4180
4185

4190 .

4185
4200
4205
4210

4215 .

4220
4225
4230

4235 .

HS B6]
DA FSET-1

HS BY 7
DA FSET-1

HS B8 8
DA FSET-1

HS B9 9
DA FSET-

HS BC <
DA DEC.TRK-1

HS BE >
DA INC.TRK-1

HS G A
DA SET.ASCIL.EDIT-1
HS C4 D
DA SWT.DRV-1

HS C8 H
DA SET.HEX.EDIT-1
HS§ CC L
DA DEC.SCT1

HS CE N
DA INC.5CT-1

HS D5 U
DA SET.HEX.OR.DEC-1
.HS BO 0
DA FILES-1

HS 00 EQT

LDX EDIT.MODE.FLAG
BEQ .4 HEX EDIT.
GMP #CTRL.I
BNE 1

LDA #340
STA OFFSET
LDA #6

JMP SETMODE
CMP #CTRL.F
BNE 2

LDA #380
STA OFFSET
LDA #9

JMP SETMODE
CMP #CTRL.N
BNE 3

LDA #0

STA OFFSET
LDA #3

JMP SETMODE
CMP #CTRL.L
BNE .4

LDA #8520
STA OFFSET
LDA #12
JMP SETMODE
CMP #RETURN
BNE 5

JMP RIGHT
CMP #CTRL.U
BNE 6

JMP RIGHT
CMP #CTRL.H
BNE .7

JMP LEFT
CMP #CTRL.Q
BNE 8

JMP UP

CMP #CTRL.Z
BNE 9

JMP DOWN
LDX FIRST
BNE .10

RTS

CMP #CTRL.D
BNE .12

LDX CRSVAL
LDA BUFFER+1,X
STA BUFFERX
INX

BNE .11

JMP PRINT.SCREEN.DATA
CMP #CTRL.A

BNE .14

LDX #SFE

DEC CRSVAL

LDA BUFFER,X

INVERSE

FLASHING

NORMAL

Lower Case

The Best of Hardcore Computing Page 8

4240 STA BUFFER+1X 4665 CPX EDFLG

4245 DEX 4670 BNE .9

4250 CPX CRSVAL 4675 JMP .2

4255 BNE .13 4680 .9 STX EDFLG

4260 INC CRSVAL 4685 JMP .14

4265 JMP PRINT.SCREEN.DATA 4690 .10 LDX OFFSET

4270 .14 LDX #1 4695 CPX #%20 LOWER CASE?
4275 STX EDFLG 4700 BNE .11

4280 RTS 4705 CMP #8C1

4285 4710 BCC .14 < AN
4200 = 4715 CMP #$DB

4295 4720 BCS .14 >ar="m
4300 EDIT LDX #&FF 4725 BCC .13 ...always
4305 STX FIRST 4730 .11 CMP #3C0

4310 INX 4735 BCS .12 >="g"
4315 STX EDFLG 0=EDTON 4740 ADC OFFSET

4320 LDX FLTHUM 4745 12 CLC

4325 STX ON.OFF 4750 13 ADC OFFSET

4330 LDA FSTATX 4755 .14 LDX CRSVAL

4335 BNE 1 4760 STA BUFFER,X

4340 STA FLTNUM 4765 JSR FIND.CURRENT.LINE
4345 1 JSR PRINT.SCREEN.DATA 4770 INC CRSVAL

4350 2 JSR PRINT NEW.LINE 4775 JSR PRINT.OLD.LINE
4355 .3 JSR PRTCRS 4780 JMP .2

4360 JSR INKEY 4785

4365 CMP #ESCAPE 4790 »

4370 BNE .5 4795

4375 4800 CKHEX CMP #$B0 npgn
4380 LDX ON.OFF 4805 BCC .3 L]
4385 STX FLTNUM 4810 CMP #$C7

4390 LOX #1 4815 BCS 3 3 LR
4395 STX EDFLG EDIT OFF 4820 CMP #3BA

4400 LDA EDIT.MODE.FLAG 4825 BCC 2 < "o
4405 BEQ .4 4830 CMP #3501

4410 LDA #3 4835 BGC .3 >= "an
4415 STA EDIT.MODE.FLAG 4840 SBC #7

4420 4 RTS 4845 2 AND #30F

4425 4850 .3 RTS

4430 * CHECK FOR HEX OR ASCIl EDIT 4855

4435 4860 * Flashing cursor routine
4440 5 LDX EDIT.MODE.FLAG 4865

4445 BNE .8 4870 NOPRESS LDX CRSVAL

4450 4875 LDA BUFFER.X

4455 » HEX EDIT ROUTINE 4880 PHA

4460 4885 LDA #$20

4465 CMP #SPACE 4890 JSR WAIT.FOR.KEY

4470 BCS .6 4895 LDA #SPACE

4475 J5R CTRLMV 4300 JSR WAIT.FOR.KEY

4480 LOX #SFF 4305 LDX #1

4485 STX FRST 4910 STX KEYFLG

4490 INX 4915 PLA

4495 STX EDFLG 4920 JSR WAIT.FOR.KEY

4500 JMP 2 4925 INKEY LOX #0

4505 .6 JSR CKHEX 4930 STX KEYFLG

4510 CMP #16 4935 OUTKEY LDA KEY

4515 BCS .3 4340 BPL NOPRESS

4520 INC FIRST 4945 STA STROBE

4525 BNE .7 4950 STA LOC

4530 LDX CRSVAL 4955 STA LOC+1

4535 STA BUFFER X 4960 LDX #1

4540 JMP 2 4965 STX KEYFLG

4545 .7 STA LOC 4970 RTS

4550 LDX CRSVAL 4975

4555 LDA BUFFER X 4980 »

4560 ASL 4985

4565 ASL 4990 WAIT.FOR.KEY

4570 ASL 4995

4575 ASL 5000 LDX CRSVAL

4580 ORA LOC 5005 STA BUFFER.X

4585 STA BUFFER.X 5010 JSR PRINT.NEW.LINE
4590 JSR FIND.CURRENT.LINE 5015 LDA #60

4595 INC CRSVAL 5020 1 TAX

4600 JSR PRINT.OLD.LINE 5025 2 LDY KEY

4605 LDA R$FF 5030 BMI .3

4610 STA FIRST 5035 DEX

4615 JMFP .2 5040 BNE .2

4620 5045 SBC #1

4625 * ASCII EDIT ROUTINE 5050 BNE 1

4630 5055 .3 RTS

4635 .8 CMP #$A0 5060

4640 BCS .10 5065 *

4645 LDX USE.CTRL.CHARS 5070

4850 BEQ .14 5075 PRTCRS LDA #21

4655 JSR CTRLMY 5080 J3R FIND.BASE.ADDR
4660 LDX #0 5085 LOY #30

5080 LDA CRSVAL
5095 JSR PRINT.HEX.OR.DECIMAL
5100 LDX SPACES
5105 BEQ 7

5110 .6 LDA #SPACE
5115 STA (BASE1),Y
5120 INY

5125 DEX

5130 BNE 6

5135 .7 RTS

5140

5145 *

5150

5155 PRINT.HEX.DEC

5160

5165 LDA BYTE
5170

5175 PRINT.HEX.OR.DECIMAL
5180

5185 PHA

5180 LDX HEX.OR.DEC.FLG
5195 BNE PRINT.DECIMAL
5200 STX SPACES
5205

5210 »

5215

5220 PRINT.HEX.BYTE

5225

5230 LDA #8374
5235 STA (BASE1),Y
5240 INY

5245 PLA

5250 PHA

5255 LSR

5260 LSR

5265 LSR

5270 LSR

5275 ORA #§BO
5280 CMP #3BA
5285 BCC .1

5290 ADC #8306
5295 1 STA (BASE1),Y
5300 INY

5305 PLA

5310 AND #50F
5315 ORA #$B0
5320 CMP #3BA
5325 BCC .2

5330 ADC #806
5335 .2 STA (BASE1).Y
5340 INY

5345 STY CH
5350 RTS

5355 »

5360

5365 PRINT.DECIMAL

5370

5375 LDX #2
5380 STX SPACES
5385 LDX #3B0
5390 PLA

5395 CMP #100
5400 BCC .2

5405 .1 INX

5410 SBC #100
5415 CMP #100
5420 BCS A

5425 DEC SPACES
5430 PHA

5435 TXA

5440 STA (BASE1).Y
5445 INY

5450 LDX #8B0
5455 PLA

5480 .2 CMP #10
5485 BCC 4

5470 .3 INX

5475 SBC #10
5480 CMP #10
5485 BCS 3

5490 DEC SPACES
5495 4 PHA

5500 LDA SPACES
5505 CMP #2
5510 BEQ .5

The Best of Hardcore Computing Page 9

5515 TXA

5520 STA (BASE1)Y
5525 INY

5530 .5 PLA

5535 ORA #$B0
5540 STA (BASE1)Y
5545 INY

5550 RTS

5555

5560 *

5565

5570 FILES LDX #21

5575 STX WNDBTM
5580 LDX #0

5585 STX SPACES
5590 INX

5585 STX SPECIAL.FUNCTION
5600 JSR HOME
5605 INX

5610 JSR PRBLANK
5615 LDA BUFFER+1
5620 JSR HEX2
5625 LDA BUFFER+2
5630 JSR HEX2
5635 JSR CR.LF
5640 JSR CR.LF
5645 LDX #$0B
5650 1 LDY #2

5655 J5R CR.LF
5660 JSR SPCOUT
5665 .2 LDA BUFFER.X
5670 JSR HEX2
5675 INX

5680 DEY

5685 BNE .2

5690 LDA BUFFER X
5695 INX

5700 ROL

5705 PHA

5710 BCC 3

5715 LDA #STAR
5720 JSR COUT
5725 JMP 4

5730 .3 JSR SPCOUT
5735 4 LDY #0

5740 PLA

5745 LSR

5750 BEQ .6

5755 .5 INY

5760 LSR

5765 BCC 5

5770 .6 LDA TYPE,Y
5775 JSR COUT
5780 JSR SPCOUT
5785 LDY #30
5790 STY HCOUNT
5795 .7 LDA BUFFER X
5800 STA LOC
5805 LSR

5810 LSR

5815 LSR

5820 LSR

5825 LSR

5830 TAY

5835 LDA (CFLT),Y
5840 AND #$FO
5845 CLC

5850 ADC LOC

5855 CMP #CTRL.AT change
5860 BMI .8 control
5865 CMP #SPACE characters
5870 BPL 8 toa
5875 LDA #PERIOD period.
5880 .8 JSR COUT
5885 INX

5890 DEC HCOUNT
5895 BNE .7

5900 INX

5905 INX

5910 BNE 1

5915 DEX

5920 STX BUFPNTR
5925 RTS

5930 TYPE AS -"TIABSRAB™
5935

5940 = Filter used by BASIC
5945

5950 ASCPRINT LDA BYTE

5955 CMP #3FF

5960 BNE .1

5965 LDA #EAD

5970 STA BYTE

5975 1 LSR

5980 LSR

5985 LSR

5990 LSR

5995 LSR

6000 TAY

6005 LDA ASCFD,Y

6010 CLe

6015 ADC BYTE

6020 JMP COUT

6025 ASCFD HS C0808040400000C0
6030

6035 HEXO LDA #5A4 Irgis
6040 JSR CouT

6045 HEXPRINT LDA BYTE

6050 HEX2 J5R PRHEX

6055 SPCOUT LDA #SPACE

6060 JMP COUT

6065

6070 * Print Hex or Decimal
6075

6080 HXBYTE LDX HEX.OR.DEG.FLG
6085 BEQ HEXOD 0 = HEX
6090 LDX BYTE

6095 LDA #0

6100 JSR LINPRT

6105 JMP SPCOUT

6110

6115 *

6120

6125 HS 00

6130 STOP HS 0000

6135

6140

*

Hexdump with checksums

0800:00 35 08 0A 00 89 3A 97
0808:3A BA 22 41 43 45 57 52
0810:49 54 45 52 22 C3 34 31
0818:29 22 42 49 4E 41 52 59
0820:20 43 48 45 43 4B 53 55
0828:4D 20 47 45 4E 45 52 41
0830:54 4F 52 22 00 91 08 14
0838:00 A2 35 3A BA 22 4E 41
0840:4D 45 20 4F 46 20 46 49
0848:4C 45 20 54 4F 20 53 41

0850:56 45 20 3D 22 3B 3A BO
0858:31 30 30 30 3A 41 24 DO
0860:4E 4D 24 3A 81 41 DO 32
0868:C1 E3 28 41 24 29 C8 31
0870:3A 413124 D0 EB 28 /1
0878:24 2C 41 C9 31 29 3A AD
0880:EA 28 41 24 2C 41 2C 31
0888:29 D1 CF 22 2C 22 C4 82
0890:00 13 08 1E 00 A2 31 30
0898:3A BA 22 53 54 41 52 54

08A0:2C 45 4E 44 20 3D 22 3B
08A8:3A B0 3130 30 30 3A 81
08B0:41 D0 32 C1 E3 28 4E 4D
08B8;24 29 C8 31 3A 4E 31 24
08C0:DO E8 28 4E 4D 24 2C 41
08C8:C9 3129 3A AD 28 EA 28
08D0:4E 4D 24 2C 41 2C 31 29
0808:CF D0 22 30 22 CD EA 28
0BED:4E 4D 242C412C 3129
08E8:D1 D0 22 39 22 29 CE 28

$647E
$4222
$DF96
$0D9C
$6302
$2730
$F25A
$0B70
SEECS
$90F4

$12BB
$B4CC
$ADDB
$977F
$48FE
$B46E
$A3D3
$6F26
$D4DF
$C13F

$EEDO
$5997
$4E4S
$93EB
$B82F
SEEFF
$DD8F
$1276
$61D6
$86BD

0BFO:EA 28 4E 4D 24 2C 41 2C
08F8:31 28 CF D0 22 41 22 CD
0900:EA 28 4E 4D 24 2C 41 2C
0908:31 29 D1 DO 22 46 22 29
0910:C4 82 00 42 09 28 00 51
0918:D0413A 4241D032 35
0920:32 3A B0 31 30 32 30 3A
0928:4E 31 24 DO £9 28 4E 4D
0930:24 2C E3 28 4E 4D 24 29
0938:C9 51 29 3A B0 31 30 32

0940:30 00 8F 09 32 00 97 3A
0948:BA 3A BA 22 04 4E 4F 4D
0950:4F 4E 43 22 3A BA 22 04
0958:4D 4F 4E 49 4F 22 3A BA
0960:22 04 4F 50 45 4E 22 41
0968:24 3A BA 22 04 44 45 4C
0970:45 54 45 22 41 24 3A BA
0978:22 04 4F 50 45 4E 22 41
0980:24 3A BA 22 04 57 52 49
0988:54 45 22 41 31 24 00 A9

0990:09 3C 00 8C 36 30 38 3A
0998:BA 22 04 43 4C 4F 53 45
09A0:22 3A BA 22 04 46 50 22
09A8:00 EF 09 E8 03 B9 35 31
0980:2C 31 39 30 3A 8C 36 34
09B8:38 37 34 3A 4E 4D 24 DO
09C0:22 22 3A 81 41 DO 35 31
09C8:32 C137 36 38 3AADE2
0900:28 41 29 D1 CF 31 34 31
09D8:C4 4E 4D 24 DO 4E 4D 24

09E0:C8 E7 28 E2 28 41 29 C9
09EB:31 32 38 29 3A 82 00 F5
(09F0:09 F2 03 B1 00 OE 0A FC
09F8:03 AD E3 28 4E 31 24 29
0A00:D1 31 CE E3 28 4E 31 24
0A08:29 CF 34 C4 AC 00 37 A
DA10:06 04 AD E3 28 4E 31 24
0A18:29 D134 C4 4E 3124 D0
0A20:E8 28 22 30 30 30 30 22
0A28:2C 34 C9 E3 28 4E 31 24

0A30:29 29 CB 4E 3124 00 7C
0A38:0A 10 04 44 4E DO 30 3A
0A40:8141D031C1343A 44
0A48:47 DO E5 28 EA 28 4E 31
0A50:24 2C 41 2C 31 29 29 3A
DA58:AD EA 28 4E 31 24 2C 41
0A60:2C 31 29 CF 22 38 22 C4
0A68:44 47 DO E6 28 EA 28 4E
0A70:31242C 412C 312929
0A78:C9 35 35 00 C3 0A 1A 04

0AB0:44 4E DO 44 4E C8 D3 28
0A88:31 36 CC 28 34 C9 41 29
0A90:CA 44 47 29 3A 82 3A B9
0A98:42 41 2C 44 4E CI D3 28
OAAD:44 4E CB 32 35 36 29 CA
0AAB:32 35 36 3A B9 42 41 C8
DAB0:31 2C 44 4E CB 32 35 36
0AB8:3A 42 41 D0 42 41 C8 32
0ACO0:3A B1 00 00 00 4E CD 08
0ACB8:52 94 00 00 41 00 83 20

0AD0:00 00 00 41 80 14 06 95
0AD8:00 00 41 B1 10 7E 94 00

$C908
$AD32
$1237
$403C
$CD11
$2B09
$1D84
$93DB
$77BA
$EI56

$5B53
$CFB3
$B956
$2C8F
$6682
$A529
$7EAE
$1413
$9AD2
$3CB3

$A5D7
$8427
$D238B
$94D9
$F77C
$9E70
$8E83
$4360
$0074
$2AE4

$ET747
$6A8C
$0D5C
$CBF8
$EQAS8
$4ABO
$B87E
$8735
$9092
$D5C0

$D645
$CC4E
$4532
$8524
$EODE
$C37A
SEBF8
$F3D8
$3C88
$F924

$CB22
$7143
$FICS
$7288
$1BD3
$04B1
$D7F7
$4ES0
$3E58
$68A4

$3722
$12F0

The Best of Hardcore Computing Page 10

0AED:00 4E B1 04 43 94 00 00
OAEB:51 00 83 00 00 00 00 42
OAF0:41 89 00 00 00 00 44 4E
0AF8:8D 11 00 00 00 44 47 00
0B00:00 00 00 00 09 30 C9 3A
0B08:90 00 E9 39 4C 17 0B 09
0810:B0 C9 BA 90 02 69 06 91
0B18:28 E6 28 68 29 OF A6 E4

DB20:EC 34 06 DO DB 09 30 €9
0B28:3A 90 0D E9 39 4C 38 0B
0B30:08 BO C9 BA 90 02 69 06
0B38:91 28 E6 28 E6 E4 A6 E4
0B40:F0 08 CE 6C 08 AD 6C 08
0B48:D0 91 AE 6F 08 FO 1B A9
0B50:A0 91 28 A6 25 E0 13 DO
0B58:11 A9 A0 91 26 91 28 E6
0B60:28 91 28 C8 CO 04 DO F3
0B68:91 28 60 A9 00 85 E1 85

0B70:E2 A0 C8 B9 F2 B3 F0 0B
0B78:0A 90 FB E6 E1 DO F9 E6
0B80:E2 DO F5 88 DO ED A2 OF
0B88:8D 9D 0B 20 ED FD CA DO
0B90:F7 A6 E1 A5 E2 20 24 ED
0B98:A9 8D 20 ED FD 60 A0 BD
0BAO:A0 C5C5 D2 C6 A0 D3 D2
0BA8:CF D4 C3 C5 D3 A0 AD 2B
0BB0:08 85 EO 4A 4A 4A 4A 4A
0BBB8:A8 B1 E9 AA 29 F0 18 65

0BCO:E0 85 EO 8A 29 OF DO 03
0BC8:A5 E0 60 C9 01 DO 09 B1
0BDO:E7 C5 EO DO F3 A9 AD 60
0BD8:C9 02 D0 08 B1 E7 C5 EO
0BEO:F0 E6 DO F1 C9 03 FO ED
0BES:4C C8 0B 00 00 00 00 00
0BF0:00 00 00 00 00 00 00 00
0BF8:00 00 00 CO 80 80 40 80
0C00:00 00 EO C1 81 81 41 81
0C08:01 01 E1 CO 80 80 40 01

0C10:00 00 E0 02 02 02 02 CO
0C18:00 40 EO 00 00 00 00 00
0C20:00 00 00 GO 80 80 40 80
0C28:00 00 EO 00 00 00 00 00
0C30:00 00 00 00 00 00 00 00
0C38:00 00 00 00 00 00 00 00
0C40:00 00 00 00 00 00 00 00
0C48:00 00 00 Q0 00 00 00 00
0C50:00 00 00 CO AD CO AO 00
0C58:A0 CO CO 00 00 00 00 00

0C60:00 00 00 00 00 00 00 00
0C68:00 00 00 00 00 00 00 00
0C70:00 00 00 00 00 00 00 00
0C78:00 00 00 00 00 00 00 00
0C80:00 00 00 00 00 00 00 00
0C88:00 00 00 00 00 00 00 00
0C90:01 00 00 00 00 38 OC EB
0C98:08B 43 0C F3 0B 4B OC FB
0CA0:0B 53 0C 03 OC 5B 0C 0B
0CAB8:0C 63 0C 13 0C 6B OC 1B

23

0CB0:0C730C 23 0C 7B OC 28
0CB8:0C 83 0C 33 0C AD 2C 08
0CC0:8D 1A 08 AD2D 08 8D 1B
0CC8:08 A9 15 20 8F 0A AD 00

$6187
3E870
$7064
$27B2
$C71B
$4CEC
$7678
$341F

$2BBA
$9C01
$0453
$4302
$3752
$44B2
$9A21
$3EFF
$0C9A
$AB78

$A006
$6CA9
$9AED
$D0SC
SEAA3
$E598B
$24F5
$C3AE
$8E79
$A268

$83A4
$8305
$D157
$602E
$D1A8
$F062
$F0C2
$50C2
$9B2C
$490A

$1330
$9370
$C350
$4330
$83B0
$4330
$B3B0O
$4330
$7390
$B3B0

$4330
$8380
$4330
$B3B0
$4330
$B380
$DB73
$CFA7
$SECEE
$0C66

$AC2E
§3740
$5D0C3
$6B18

0CD0:B9 72 0D 91 28 C8 CO 03
0CD8:90 F6 AD 17 08 4A 4A 4A
OCEO0:4A 09 BO 91 28 C8 B9 72
0CE8:0D 91 28 G8 CO 08 90 F6
OGF0:AD 18 08 09 B0 91 28 C8
0CF8:B9 72 0D 91 28 C8 GO 0C

0D00:90 F6 AD1A 08 20 D110
0D08:B9 72 0D 91 28 C8 CO 12
0D10:90 F6 AD 1B 08 20 D1 10
0D18:B972 0D 9128 C8 CO 18
0D20:90 F6 AD 24 08 20 D1 10
0D28:89 72 0D 91 28 C8 CO1E
0D30:90 F6 AD 34 08 20 D1 10
0D38:89 72 0D 91 28 C8 C0 23
0D40:90 F6 AD 35 08 09 BO 91
0D48:28 C8 B9 72 0D 91 28 C8

0D50:C0 25 90 F6 AE 6E 08 BD
0D58:63 0D 91 28 C8 E8 CO 28
0D60:90 F5 60 08 05 18 01 13
0D68:03 09 0E 16 06 0C 13 0C
0D70:2F 03 13 0C BA A0 A0 04
0D78:12 BA A0 AO 14 BA AQ AD
0D80:A0 Al 13 BAAQ AD A0 AQ
0D88:16 BA AD A0 AQ AD 02 BA
0D90:A0 A0 A0 AD 06 A0 AD AD
0D98:A0 A0 A2 01 EC 2F 08 DO

0DAQ:01 CA 8E 2F 08 4C C90C
0DA8:A2 01 EC 18 08 D0 01 E8
0DBO:8E 18 08 4C C9 OC A5 E1
0DB8:38 E9 BO 8D 35 08 4C 29
ODCO:0A CE 1B 08 10 13 AE 70
00C8:08 CA 8E 1B 08 CE 1A 08
0DD0:10 07 AE 7108 CA 8E 1A
0DD8:08 20 90 08 4C 29 OA EE
DDEO:1B 08 AE 1B 08 EC 70 08
0ODES8:90 EF A2 00 8E 1B 08 EE

ODF0:1A 08 AE 1A08 EC 71 08
ODF8:90 DF A2 00 8E 1A 08 FO
0E00:D8 20 A3 OA CE 34 08 4C
(0E08:29 OE 20 A3 DA EE 34 08
0E10:4C 29 OE 20 A3 0A AD 34
0E18:08 38 E9 0D BO 08 C8 FC
0E20:90 02 E9 OE 69 04 8D 34
0E28:08 20 CF 0A 20 CC 0A 20
0E30:B3 10 AE 6B 08 DO 32 60
0E38:20 A3 0A AD 34 08 18 69

0E40:0D 90 08 C9 04 B0 02 69
DE48:0E 69 FB 8D 34 08 4C 29
0OES50:0E A9 00 8D 6E 08 4C C9
0E58:0C A9 03 DO F6 AD 1A 08
DEG0:8D 2C 08 AD 1B 08 8D 2D
DE68:08 AE 72 08 FO OC CA BE
0E70:72 08 AD 00 CO 10 FB 20
0E78:29 0A 20 83 10 A2 FD E8
OE80:E8 E8 BD 95 OE FO 0D C5
DE88:E0 DO F4 E8 BD 96 OE 48

0E90:BD 95 O 48 60 C9 12 OF
0E98:CA 00 OE CB 09 OE CD 37
OEAO:OE 88 00 OE 95 09 OE AC
OEA8:CC 0D AE EEODB1B50D
DEBO:B2 B5 0D B3 B5 0D B4 B5
0EB8:0D BS B5 0D B6 B5 0D B7

$010C
$695F
$788D
$0D45
$837A
$66C9

$6E2B
$8547
$6840
$69C4
$0FA5
$B82F
$1E16
$44F2
$6134
$36A3

$5371
$0D65
$6F98
$3245
$BEF4
$ADCO
SACAE
$48FC
$6724
$24A7

$563F
$96E0
$3C14
$9D5D
$B118
$2027
$460A
$26F5
$2725
$B3AE

$B5D6
$1A38
$1C1A
$8C42
$5101
$9865
$FCOA
$7624
$AE20
$c427

$FD24
$78D7
$0B63
$4C90
$273B
$E579
$0357
$CC82
$977A
$AODA

$C69A
$3495
$F571
$054C
$768F
$599F

OEC0:85 0D B8 B5 0D B9 B50D
0EC8:BC CC 0D BE EE 0D C1 58
0EDO:0E G4 A7 0D €8 50 OE CC
0ED8:CO 0D CE DE 0D D5 99 0D

OEED:BO 3F 11 00 AE 6E 08 FO
OEEB:38 C9 89 DO 0A A9 40 8D
OEF0:69 08 A9 06 4C 53 OE C9
OEF8:86 DO 0A A9 80 8D 69 08
OF00:AQ 09 4C 53 OE C9 8E DO
0F08:0A A9 00 8D 69 08 A8 03
0F10:4C 53 OE C9 8C DO DA A9
0F18:20 8D 69 08 A9 0C 4C 53
0F20:0E C9 8D DO 03 4C 0A OE
0F28:C995 D003 4C DA DE C9

0F30:88 DO 03 4C 01 OE C9 91
0F38:D003 4C 13 0E C99A DO
0F40:03 4C 38 OE AE 6A 08 DO
0F48:01 60 C9 84 DO OF AE 34
0F50:08 BD 01 09 9D 00 09 E8
0F58:D0 F7 4C 29 0A C9 81 DO
0F60:17 A2 FE CE 34 08 BD 00
0F68:09 9D 01 09 CA EC 34 08
OF70:DO0 F4 EE 34 08 4C 29 0A
0F78:A2 01 8E 6B 08 60 A2 FF

OF80:8E 6A 08 E8 8E 6B 08 AE
0F88:35 08 8E 30 08 BD 8B 0C
0F90:D0 03 8D 35 08 20 29 OA
(0F98:20 CC 0A 20 B3 10 20 83
OFA0:10 C9 9B DO 16 AE 30 08
OFA8:8E 35 08 A2 01 8E 6B 08
OFBO:AD 6E 08 FO 05 A9 03 8D
OFB8:6E 08 60 AE 6E 08 D0 4A
QOFCD:CY AD B0 OF 20 E4 OE A2
OFC8:FF 8E 6A 08 ES BE 6B 08

0FDO:4C 98 OF 20 54 10 C9 10
OFD8:BO C1 EE 6A 08 D0 09 AE
OFE0:34 08 9D 00 09 4C 98 OF
OFEB:85 EO AE 34 08 BD 00 09
OFF0:0A OA OA 0A 05 E0 9D 00
OFF8:09 20 A3 OA EE 34 08 20
1000:CF OA A9 FF 8D 6A 08 4C
1008:98 OF C9 A0 BO 18 AE 33
1010:08 FO 2F 20 E4 OE A2 00
1018:EC 68 08 D0 03 4C 98 OF

1020:8E 6B 08 4C 42 10 AE 69
1028:08 E0 20 DO 0A C9 C1 90
1030:11 C9 DB B0 OD 90 08 C9
1038:C0 B0 03 6D 69 08 18 6D
1040:69 08 AE 34 08 9D 00 09
1048:20 A3 OA EE 34 08 20 CF
1050:0A 4C 98 OF C9 B0 90 10
1058:C9 C7 B0 0C C9 BA 90 06
1060:C9 C1 90 04 E9 07 29 OF
1068:60 AE 34 08 BD 00 09 48

1070:A9 20 20 9A 10 A9 A0 20
1078:9A 10 A2 01 8E 6F 08 68
1080:20 9A 10 A2 00 8E 6F 08
1088:AD 00 C0 10 DC 8D 10 CO
1090:85 E0 85 E1 A2 01 BE 6F
1098:08 60 AE 34 08 9D 00 09

continued on page 51

$71B0
$D1F5
$CD42
$D5C1

$C13A

$23E1

$B6F3
$06BC
$97FA
$B3C3
$F89C
$76AF
$96B6
$76C9

$0487
$2B41
$2F6C
$1797
$EDFA
$C9C4
$D538
$849A
$B78E
$4116

57638
$9541
$413D
$82D5
$0BC3
$4097
$CF37
$BF81
$F1E6
$74AA

$C314
$1B9F
$C226
$3B78B
$37CD
$7598
$49E0
$82F3
$F459
$B962

$1029
$02B6
$7FE7
$B821
$F7A8
$F079
$1611
$2DF0
$7C5F
SAE70

$4D4E
$FECH
$5D69
$EO5C
$83E7
$0C28B

The Best of Hardcore Computing Page 11

BAn inside look at disk formats with

DiskView

This program is called DiskView. Dis-
kView is a mini “'nibbler.” It will read the
raw nibbilized data from a disk without
regard to disk format.

This means data can be viewed on a
nonstandard format disk (copy-protected)
as easily as from a normal DOS formatted
disk. With DiskView, a nonstandard disk
can be examined to see what was
changed. Often these changes are minor
and a similar change can be made to your
DOS. This would allow use of DiskEdit to
read that disk.

To understand these changes lets exa-
mine the data pattern on a normal DOS 16
disk.

DOS formats a track by first writing a
unique byte called a “'sync byte.” This byte
(normally $FF) allows the Disk Il hardware
to synchronize with the data on the disk.
DOS then writes an address field, some
more sync bytes and the data field. At this
time the data field is full of $00s. DOS goes
on to write sixteen sets of address and data
fields on each track. These sets of address
and data fields are called sectors.

The following is a normal address field
for 3.3 DOS:

D5AA96FFFEAABBAEAAFBEFDEAAEB
It can be broken down into:

Start of address D5 AA 96
Volume number FF FE
52 (] T e 0 O AA BB
Lol Ty () g AE AA
ChackSUm .o cwwsvvennn awmms FB EF
End of address DE AA EB

The volume, track, sector and checksum
are in a 4+4 coded format. This means
that 4 bits in each byte are actual data. The
first byte is rotated left and logically AND-
ed with the second byte to recover the data.

The data field consists of:

Startofdata D5 AA AD
Encoded data (341 bytes)
CheGKSUM v cvvw smsmmi o (1 byte)
Endofdata DE AA EB

The data field is encoded in a 2 + 6 for-
mat. Six bits of each byte are valid data.

The basic structure of 3.2 DOS is simi-
lar to 3.3 DOS with these notable ex-
ceptions:

1. When initializing a disk, DOS 3.2 does
not write a blank data sector. Instead it just

By Charles Haight

writes enough $FFs to fill the space a data
sector would use. Trying to read a
track/sector that has never been written to
will always generate 1/O errors.

2. The data is encoded in a 3 + 5 format
which requires 410 bytes to encode 256
data bytes. This is one reason why there
are only 13 sectors.

More on Diskview

The format of DiskView is similar to
DiskEdit. A full screen of hexadecimal
bytes is displayed with the status prompts
at the bottom of the screen. The buffer ex-
tends from $2000 to $4000 hex which is
large enough to ensure reading in an en-
tire track. The slot, drive and track are
selectable. Half-tracks can be accessed by
appending a "'.5" to the track number. The
commands are:

D - change the drive

L - read last track (steps by half tracks)
N - read next track (steps by half tracks)
P - print screen contents

R - read the current track

S - change the slot

T - select a track or half track

X - exit to basic

— - increment buffer

+~— - decrement buffer

Type in the program and save it to disk.
Be especially careful with the data state-
ments. When those values are poked into
memory they become a machine language
subroutine that is the heart of the program.
Run the program. When the COMMAND
prompt flashes, press the R key. The
screen will fill with hex bytes that show the
data stored on the disk.

CAUTION: Utility Nibbler is DOS depen-
dent. It calls directly into DOS to step the
drive motor. DOS 3.3 and 48K of memory
are needed. This program can be used to
read 13 or 16-sector disks or any other Ap-
ple disk, but it will only run under a 48K Ap-
ple 3.3 DOS.

1@ TEXT : HOME : IN# @: PR# @:
LOMEM: 16384: POKE 1144,90:
GOTO 90

20 KY%X = PEEK (- 16384): IF KYX
< 128 THEN 20

3@ POKE - 16368,0: RETURN

4@ FOR X = 1 TO 4@: PRINT "=";:
NEXT : RETURN

5@ GOSUB A@: POKE 781,@: POKE
1144 ,90: POKE TRX,0: CALL
10%: POKE 781,255: POKE
TR%,TK%: CALL IO%: RETURN

6@ VTAB 23: HTAB 2: INVERSE :
PRINT "SLOT";: HTAB 18:
PRINT "DRIVE";: HTAB 19:
PRINT "TRACK';: NORMAL

70 VTAB 23: HTAB 7: PRINT PEEK
(S1%) / 16;: HTAB 16: PRINT
PEEK (DR%) - PEEK (S81%);:
HTAB 25: PRINT " ""B$BS
BB PEEK (TRX) / 2

80 RETURN

9@ GOSUB 540

10@ INX = PEEK (CTX%): VTAB 21:
HTAB 32: PRINT "PAGE "INX -
31: GOSUB 60: VTAB 23: HTAB
30: CALL — 868: FLASH :
PRINT '">COMMAND<'": NORMAL :

Gosus 20
11@ IF KYX = 210 THEN GOSUB 480
120 IF KY% = 211 THEN GOSUB 390
130 IF KYX = 216 THEN GOSUB 410
140 IF KYX = 212 THEN GOSUB 420
150 IF KYX = 199 THEN GOSUB 270
160 IF KYX = 196 THEN GOSUB 230
170 IF KYX = 208 THEN GOSUB 290
180 IF KYX = 136 THEN GOSUB 25@
19@ IF KYX = 149 THEN GOSUB 370
200 IF KYX = 2@4 THEN GOSUB 490
210 IF KYX = 206 THEN GOSUB 510

220 GoTO 100

230 VTAB 23: HTAB 3@: INVERSE :
PRINT G$"SET DRIVE'";: HTAB
1@: FLASH : PRINT "DRIVE";:
NORMAL : HTAB 16: PRINT " "
CHRS (8);: GET A$:DR = VAL
(A$): IFDR<1ORDR>2
THEN 230

240 POKE DRX, PEEK (S1X) + DR:
GOTO 50

250 IN%X = INX - 1: IF INX < 32
THEN INX = 32

260 POKE CTX%,INX: CALL MVX:
RETURN

270 PRINT G$: IF G$ = CHR$ (7)
THEN G$ = "*': RETURN

28@ IF G$ = "' THEN G$ = CHR$
(7): RETURN

290 VTAB 23: HTAB 3@: FLASH :
PRINT G$''>PRINTER<";:
NORMAL

200 PR# 1

310 BUFFERX = PEEK (CTX) * 256

320 PRINT : PRINT "TRACK "TKX

The Best of Hardcore Computing Page 12

330 FOR X = @ TO 255 STEP 13:
FOR Y = @ TO 12: POKE NMX,
PEEK (BUFFER% + X + Y): CALL
HX%: PRINT * '';: NEXT Y:
PRINT

340 IF PEEK (- 16384) = 155
THEN 360

350 NEXT X

360 PR# @: POKE - 16368,0:
RETURN

370 IN% = IN%K + 1: IF INX > 63
THEN INX = 63

380 POKE CT%,INX: CALL MV%:
RETURN

390 VTAB 23: HTAB 3@: INVERSE :
PRINT G$''NEW SLOT?";: HTAB
2: FLASH :z PRINT "SLOT";:
NORMAL : HTAB 7: PRINT " "
CHR$ (B);: GET A$:KYX = VAL
(A$): IF KYX <1 OR KYX > 7
THEN 398

400 POKE S1%,KYXZ * 16: POKE
S2Z¥%,KYX * 16: GOTO 240

41@ TEXT : HOME : POKE 33,33:
CALL 10@2: END

420 C3 = ""': VTAB 23: HTAB 3@:
INVERSE : PRINT "SET
TRACK";: HTAB 19: FLASH :
PRINT GS"TRACK";: NORMAL :

(8) CHR$ (B);: GET A%:C% =
C$ + A%$: PRINT AS$;: GET
A$:C% = C$ + A%: IF A% = CHRS
(13) THEN 460

430 PRINT AS;

440 GET A$:C$ = C$ + AS: PRINT
AS$;

450 IF A% = ".," THEN GET A$:C$ =
C$ + A$: PRINT AS;

46@ KY = VAL (C$): IF KY <@ OR
KY > 35 THEN 420

470 TKX = KY * 2

480 POKE CT%,32: VTAB 23: HTAB
30: FLASH : PRINT
U>>>READL<<"G$;: NORMAL :
PRINT " ";: POKE TR%,TK%:
GOSUB 7@: CALL I0%: GOTO 6@

490 TKX = TKX — 1: IF TKX < 0
THEN TK% = 71

500 GOTO 480

510 TKX = TK% + 1: IF TKXZ > 71
THEN TK% = 0

520 GOTO 480

530 STOP

540 FOR X = 768 TO 894: READ X¥%:
POKE X,X%: NEXT X

550 DATA162,97,189,137,192,162,
96,189,137,192,160,5,169,2
55,32,168,252,136,16,248,1

2,169,0,133,30,169,32,133,
31,162,96,160,0,189,140,19
2,16,251,145,30,230,30,
208,245,230,31,165,31,201,
64,144,237

560 DATA189,136,192,169,1,133,
37,32,34,252,169,08,133,36,
133,30,169,13,133,31,162,1
.32,74,249,166,30,189,
@0,32,32,218,253,162,1,32,7
4,249,230,30,240,7,198,31,
208,235,76,75,3,32,156,252
,230,37,32,34,252,169,22

57@ DATA 133,34,96,169,172,32,
218,253,96

580 S1% = 774:52% = 8@5:DRX =
T69:TR% = 789:MVX = 830:CTX
= 856:B% = CHR$ (B):G$ =
CHR$ (7):I0% = 768:NM% =
89@:HXX = 889:0R = 1

590 GOSUB 4@: VTAB 8: HTAB 10:
PRINT “COPYRIGHT 1981 (C)'":
PRINT : HTAB 1@: PRINT "ALL
RIGHTS RESERVED'": PRINT :
HTAB 1@: PRINT "HARDCORE
COMPUTING': PRINT : HTAB 1@:
PRINT "P.0O. BOX 44549":
PRINT : HTAB 1@: PRINT
"TACOMA, WA 98444"

PRINT " " CHR$ (8) CHRS 69,0,32,160,185,189,142,19
4 plus 4 Conversion Chart
AA+AA=00 AE+BA=18 BA+EA=60 BE+FA=78 EB+AA=82 EF+FA=DA
AA+AB=01 AE+BB=19 BA+EB=61 BE+FB=79 EB+AB=83 EF+FB=DB
AAR+AE=04 AE+BE=1C BA+EE=64 BE+FE=7C EB+AE=86 EF+FE=DE
AA+AF=05 AE+BF=1D BA+EF=65 BE+FF=7D EB+AF=87 EF+FF=DF
AA+BA=10 AE+EA=48 BA+FA=70 BF+AA=2A EB+BA=92 FA+EA=EOQ
AA+BB=11 AE+EB=49 BA+FB=71 BF+AB=2B EB+BB=93 FA+EB=E1
AA+BE=14 AE+EE=4C BA+FE=74 BF+AE=2E EB+BE=96 FA+EE=E4
AA+BF=15 AE+EF=4D BA+FF=75 BF+AF=2F EB+BF=97 FA+EF=E5
AA+EA=40 AE+FA=58 BB+AA=22 BF+BA=3A EB+EA=C2 FA+FA=FO
AA+EB=41 AE+FB=59 BB+AB=23 BF+BB=3B EB+EB=C3 FA+FB=F1
AA+EE=44 AE+FE=5C BB+AE=26 BF+BE=3E EB+EE=C6 FA+FE=F4&4
AA+EF=45 AE+FF=5D BB+AF=27 BF+BF=3F EB+EF=C7 FA+FF=F5
AA+FA=50 AF+AA=0A BB+BA=32 BF+EA=6A EB+FA=D2 FB+EA=E?Z2
AA+FB=51 AF+AB=08B BB+BB=33 BF+EB=68B EB+FB=D3 FB+EB=E3
AA+FE=54 AF+AE=0E BB+BE=36 BF+EE=6E EB+FE=D6 FB+EE=E®6
AA+FF=55 AF+AF=0F BB+BF=37 BF+EF=6F EB+FF=D7 FB+EF=E7
AB+AA=02 AF+BA=1A BB+EA=62 BF+FA=T7A EE+BA=98 FB+FA=F2
AB+AB=03 AF+BB=18B BB+EB=63 BF+FB=78B EE+BB=99 FE+FB=F3
AB+AE=06 AF+BE=1E BB+EE=66 BF+FE=T7E EE+BE=9C FB+FE=DE
AB+AF=07 AF+BF=1F BB+EF=67 BF+FF=7F EE+BF=9D FB+FF=DF
AB+BA=12 AF+EA=4A BB+FA=72 EA+AA=80 EE+EA=C8 FE+EA=ES8
AB+BB=13 AF+EB=4B BB+FB=73 EA+AB=81 EE+EB=C9 FE+EB=E9
AB+BE=16 AF+EE=4E BB+FE=76 EA+AE=84 EE+EE=CC FE+EE=EC
AB+BF=17 AF+EF=4F BB+FF=77 EA+AF=85 EE+EF=CD FE+EF=ED
AB+EA=42 AF+FA=5A BE+AA=28 EA+BA=90 EE+FA=D8 FE+FA=F8
AB+EB=43 AF+FB=58B BE+AB=29 EA+BB=91 EE+FB=D9 FE+FB=F9
AB+EE=46 AF+FE=5E BE+AE=2C EA+BE=94 EE+FE=DC FE+FE=FC
AB+EF=47 AF+FF=5F BE+AF=2D EA+BF=95 EE+FF=DD FE+FF=FD
AB+FA=52 BA+AA=20 BE+BA=38 EA+EA=CO EF+BA=9A FF+EA=EA
AB+FB=53 BA+AB=21 BE+BB=39 EA+EB=C1 EF+BB=9B FF+EB=EB
AB+FE=56 BA+AE=24 BE+BE=3C EA+EE=C4& EF+BE=9E FF+EE=EE
AB+FF=57 BA+AF=25 BE+BF=3D EA+EF=C5 EF+BF=9F FF+EF=EF
AE+AA=08 BA+BA=30 BE+EA=68 EA+FA=D0 EF+EA=CA FF+FA=FA
AE+AB=09 BA+BB=31 BE+EB=69 EA+FB=D1 EF+EB=CB FF+FB=FB
AE+AE=0C BA+BE=34 BE+EE=6C EA+FE=D4& EF+EE=CE FF+FE=FE
AE+AF=0D BA+BF=35 BE+EF=6D EA+FF=D5 EF+EF=CF FF+FF=FF

The Best of Hardcore Computing Page 13

600 VTAB 22: GOSUB 4@: GOTO 6@

Checksums for DiskView

===
-
10 - $23¢0 210 - $001F 410 - $A1CC ===
20 - $5B85 220 - $0470 420 - $2481 S==-
30 - $E458 230 - $2FC5 430 - $A968 ==
40 - $6CA2 240 - $E31D 440 - $8FDE === i
50 - $5C41 250 - $2503 450 - $D7DC ===
60 - $C6C3 260 - $86BC 460 - $FD3C === . o O S
70 - $EF9F 270 - $C22E 470 - $535E === ... " Break (random bits)
80 - $6ABD 280 - $57E2 480 - $A082 = """ Sync Bytes (5-10 bytes)
90 - $0268 290 - $BFFD 490 - $ECAC === U g ot
100 - $E564 300 - $1001 500 - $6EC7 ===
110 - $3900 310 - $574E 510 - $BCAB EEE e :
120 - $8076 320 - $2521 520 - $F92D -1 S R, Pk (341 btas)
130 - $CEB8 330 - $E3CD 530 - $AFB1 ===
140 - $A51A 340 - $F9DA 540 - $EB04 === .. Checksum
150 - $F118 350 - $26AE 550 - $9AAF === Eiid of Data
160 - $6CAC 360 - $D2c2 560 - $01A1 == T
170 - $FEOF 370 - $857E 570 - $835E —oi R e 2
180 - $F494 380 - $1320 580 - $9F9% ===
190 - $2B87 390 - $111E 590 - $0133 ===
200 - $2BEC 400 - $1C3F 600 - $03C6 ¢ - g
DOS Address and Data Mark Locations DOS 3.2 Legal Bytes
DOS 3.2 Read Locations Write Locations Hﬁ: 1’:;5(: H:;‘ 1DQE1° HEE: Eaic
HEX ~ DECIMAL HEX DECIMAL B i Be 14 EE 53g
Start of Address....B976 D5 47478 213 BEFS D5 48885 213 AD 173 D6 214 F5 245
B98O AA 47488 170 BEFA AA 48890 170 QE :;g g; g:g ig g:g
B98B B5 47499 181 BEFF B5 48895 181 B e R Bis FA 250
End of Address......B9B2 DE 47538 222 BF29 DE 48937 222 B6 182 DD 221 FB 251
BO9BC AA 47548 170 BF2E AA 48942 170 B7 183 DE 222 FD 253
Start of Data........B908 D5 47368 213 B893 D5 47351 213 e 2 Lol e
B912 AA 47378 170 B898 AA 47256 170 5D 188 EB 235
B91D AD 47389 173 BBOD AD 47261 173 BE 194 ED 237
End of Data.......... B956 DE 47446 222 BBDE DE 47326 222
Bo6O® AA 47456 170 BBE3 AA 47331 170 DOS 3.3 Legal Bytes
Sync byte used during INITialization BF38 FF
Sync byte written before the Address Mark BF73 FF "'956" 1'35? ”:: g'zc ”:Gx ;EGC
Sync byte written before the Data Mark B87E FF 87 151 BE 187 E7 231
= 9A 154 BC 188 E9 233
DOS 3.3 Read Locations Write Locations gg 122 g[EJ }gg Eg ggg
HEX ~ DECIMAL HEX DECIMAL 5 reh) Ea 558
Start of Address....B955 D5 47445 213 BC7A D5 48250 213 9F 159 CB 203 ED 237
B95F AA 47455 170 BC7F AA 48255 170 2?{ 12?{ gg ggg EE ggg
B96A 96 47466 150 BC84 96 48260 150 i 175 oc au7 b Bag
End of Address...... B991 DE 47505 222 BCAE DE 4830 222 AB 171 D3 211 F3 243
B99B AA 47515 170 BCB3 AA 48307 170 AC 172 D5 213 F4 244
Start of Data........BSE7 D5 47335 213 B853 D5 47187 213 ridl sl 2 o
BSF1 AA 47345 170 B858 AA 47192 170 AF 175 D9 217 F7 247
BBFC AD 47356 173 B85D AD 47197 173 B2 178 DA 218 Fo 248
End of Data.......... B935 DE 47413 222 BBOE DE 47262 222 B3 179 DR 219 B 250
B4 180 DC 220 FB 251
B93F AA 47423 170 BBA3 AA 47267 170 ol pelrr oH 5L
Sync byte written before the Address Mark BC6@ FF B6 182 DE 222 FD 253
Sync byte written before the Data Mark BB3E FF B7 183 DF 223 FE 254
B9 185 E5 229 FF 255

The Best of Hardcore Computing Page 14

Deprotecting disks with

Requirements:

An Apple][plus
Disks that need to be modified

As dedicated Hardcore COMPUTIST
readers will recall, the IOB program is a
simple BASIC program that performs soft-
keys. IOB stands for Input Output control-
Block. It is a list of parameters used by the
Read Write Track Sector (RWTS)
subroutine.

In the course of time, HARDCORE COM-
PUTING (old series) and HARDCORE
COMPUTIST have published several I0B
programs (or I0B modifications). These
were useful not only for copying different
types of disks but for configuring the pro-
gram to different machines.

Presented hers, is an advanced version
of the original IOB program. We're calling
it “Super 10B.” Included are the most use-
ful subroutines from all the previous |OB
programs. Here are some of the new
features:

1) The controller isn’t spread throughout
the program.

2) Half tracks can be accessed.

3) Super IOB is self-configuring.

4) Incorrectly numbered tracks can be
copied.

5) The controller performs sector modifi-
cations DURING the copy process.

6) A range of seven tracks are read at
one time to cut down the disk swaps on sin-
gle drive systems.

7) Super IOB can do everything MUFFIN
PLUS and DEMUFFIN PLUS can.

8) Automatic error trapping is now in-
cluded.

Using the Super I0B Program

Start by entering the Applesoft listing,
then

SAVE SUPER IOB
Next, enter the hexdump and
BSAVE 10B.0BJ8,A$300,L$5C

A third file is required in order to copy
disks that have been protected with a 13
sector format.

RWTS.13

To read the protected DOS 3.2 disks, Su-
per OB uses an image of the 3.2 RWTS.
By performing a swap of the image with the
RWTS currently in memory, diskettes with

By Ray Darrah

different formats can be accessed.
Use BOOT13 from the system master
disk to get DOS 3.2 into your 3.3 machine.
Once DOS 3.2 is booted up, all you have
to do is BSAVE the RWTS.

BSAVE RWTS.13,A$B800,L5800

What it Does

Super I0B de-protects disks by pushing
the RWTS to its upper most limits. Because
of this, it only works on disks with sectors
somewhat resembling normal DOS. Before
a disk can be “Softkeyed’’, the protection
scheme must be determined. The easiest
way to do this is to use a program (like
“The CIA," ‘Bag of Tricks" or "DiskView'")
which allow you to discover the difference
between normal sectors and the ones on
the intended disk.

Once the protection has been disco-
vered, all that needs to be done is the in-
sertion of a controller program (lines 1000
through 9999) into Super IOB. Here is a list
of the protection schemes Super |OB was
designed to Softkey:

1) Altered data, address, prologue, or
epilogue marks.

2) Strangely numbered sectors or tracks.

3) Modified RWTS (with same entry con-
ditions).

4) Half tracks for any of the above.

5) Thirteen or 16 sector format for any
of the above.

The following is a brief description of
each protection scheme and how it relates
to Super I0B:

HAltered marks

A technigque used on a lot of the earlier
disks is DOS mark alterations. DOS puts
certain reserved bytes on the disk (during
INITalization) so it can tell where a sector
{and other valuable information) begins.
For example, a normal 16-sector disk has
the bytes: D5 AA AD, designating the start
of the data field which contains the 256
bytes of data in encoded form. When a
standard RWTS ftries to find a seclor, it
looks for these marks. If they are not found
(either because they don't exist or they
have been changed to something else)
DOS returns with the dreaded /O ERROR.

The sequences of the four reserved-byte
marks (start of address, end of address,
start of data, end of data) are handlied by
subroutines in Super I0OB. These subrou-

tines simply change the marks the RWTS
looks for or medify the RWTS so that it
doesn't look for them at all (depending
upon the mark).

Strangely Numbered Sectors

Sometimes the numbers on the disk
which tell the RWTS what sector is current-
ly passing under the read/write head are
tampered with. These disks are easily soft-
keyed with Super IOB. The controller
simply reads, using the strange sector
numbers.

This works because the RWTS com-
pares the sector number found on the disk
with the one the controller is looking for
(even if it is higher than 15). Later, when
writing, standard sector numbers are used.
Thus de-protecting the disk!

Modified RWTS

Often, the disk-protectors will rearrange
and/or modify the standard RWTS subrou-
tine. When this happens, all one has to do
is make a controller program which reads,
using the strange RWTS, then swaps with
a normal RWTS and writes the information
back out.

Since the RWTS of a protected disk will
be modified to read any altered DOS
marks, this is a good method to use if you
are unable to determine what they have
been changed to.

Anatomy of a controller

Before we attempt to write a controller,
let’s look at the format of a controller. Here
is an explanation of the subroutines (and
sub-programs) in the Super IOB program
that are at the controller’s disposal.

Start up

Lines 10-60
The first few lines indentify the program.
Line 60, however, sets HIMEM and LOM-
EM so that they fit the memory usage re-
quirements (see memory map, following).
It then goes to “CONFIGURATION TIME."

Initial IOB setup

Line 80
This subroutine is normally GOSUBed
via “TOGGLE READ / WRITE.” Its pur-
pose is to reset the buffer page and set the
drive number, slot number and volume
number to the disk to be accessed next.

The Best of Hardcore Computing Page 15

R/W sector

Line 100-110
This subroutine is GOSUBed directly
from the controller. It reads or writes (de-
pending upon CD) at the specified track
and sector.

Move S phases

Lines 130-140

Moves the disk drive head by the num-
ber of phases specified by S; one phase
equals one half-track. It is capable of mov-
ing in either direction up to 128 phases (or
64 tracks). When moving the head, this rou-
tine doesn't let the RWTS know that the
head has been moved. Therefore, this
subroutine makes it possible to copy disks
that have track mismarkings. Care should
be taken when moving a great number of
phases that PH + S isn’t greater than 255
or less than , otherwise an error will occur.

Ignore chechsums & end marks

Line 170 (16 sector RWTS)
Line 270 (13 sector RWTS)
These routines do a few POKEs into their
corresponding RWTS. The final result is
that the RWTS no longer looks for epilogue
marks or checksums when searching for
a sector,

Altered address marks

Line 190 (16 sector RWTS)
Line 290 (13 sector RWTS)
These modify the RWTS (via POKE) so
that it looks for a different sequence of ad-
dress prologue marks. The decimal values
of the marks to look for should be stored
in DATA statements in the “DATA FOR
MARKS" area.

Bltered data marks

Line 210 (16 sector RWTS)
Line 310 (13 sector RWTS)
These are the same as the previous
subroutine except for DATA prologue
marks.

Normalizer

Lines 230-240 (16 sector RWTS)
Lines 330-340 (13 sector RWTS)
This restores the values in the RWTS
subroutine that are messed up by the three
previous routines. This routine should be
called just before writing, when using only
one RWTS (assuming of course that one
of the previous routines was called before
reading).

Exchange RWTS

Line 360
This is the standard swap AWTSs rou-
tine. It exchanges the RWTS at $1900 with
the one at $B800, which is the normal resid-
ing place for an RWTS. To tell the swap
routine, (which is invoked by a CALL 832)
what to exchange, a few POKEs must be

executed. They are:
POKE 253, start of first location
POKE 255, start of second location
POKE 224, number of pages (a standard
RWTS is eight pages long)

Format disk

Lines 380-410
Formats the target disk. It is meant to be
used before the Softkey operation begins
(and is GOSUBed by “CONFIGURATION
TIME”’) but can be called by the controller
should the need arise.

Print track & sector

Line 430
This is the subroutine that puts the cur-
rent track and sector number at the top of
the screen during the softkey operation.

Center message

Line 450
Centers a message (contained in A$) at
the current VTAB position and RETURNSs.

Print message and wait

Line 470
This routine uses "“CENTER MES-
SAGE"” to print the intended message at
a VTAB of 11 and then it prints “PRESS
ANY KEY TO CONTINUE.” After this, it
waits for a key to be pressed and
RETURNSs.

Toggle Read/Write

Lines 490-530

This routine toggles the state of CD (from
ReaD to WRite and vice versa) and prints
the current mode in flashing letters at the
very top of the screen. In addition, if the
user has only one drive, it asks him to swap
disks. It then exits via “INITIAL 10B
SETUP.” Thus making the sector buffer
ready for the next operation.

Controller

Lines 1000-9999
These are the line numbers set aside for
the controller. This area should have all of
the controller and subroutines (sector edits
and the like). Before using this, please see
the memory map that follows.

Configuration time

Lines 10000-10090
This routine asks the user which slots
and drive numbers to use for the various
disks. It also formats the target disk if the
user so desires.

Get slot and drive#

Lines 10110-10130
Used by “CONFIGURATION TIME” to
get SLot and DriVe information.

Get a key

Lines 10150-10170
Used by "“GET SLOT AND DRIVE#" to

wait for the appropriate drive or slot num-
ber to be typed.

Disk errox

Lines 10190-10270
This is the normal error-trapping routine.
If a disk error occurs, this routine will print
the error message, otherwise, it will as-
sume the error is in the controller and the
program will crash (CALL 834).

Data for marks

Lines 62010-63999

These line numbers should contain the
appropriate data (if any) required for any
altered mark routine.

Note: In the above line number descrip-
tion, line numbers consisting of REMs have
ommitted. They may be excluded (although
it isn't recommended) when typing the pro-
gram in.

Now that you have an idea of the subrou-
tines, note how the following variables re-
late to them. While examining this table,
it would be a good idea to observe the BAS-
IC that makes up the previously listed
subroutines. This will give you a good idea
of how things are accomplished in Super
10B.

A - general temporary usage, scrambled
by “MOVE S PHASES.”

A$ - holds message to pass to the user
via “CENTER MESSAGE"” and “PRINT
MESSAGE AND WAIT,” scrambied by
“TOGGLE READ / WRITE.”

A1,A2,A3 - scrambled by any “AL-
TERED ADDRESS MARKS” or “AL-
TERED DATA MARKS” routine, they are
READ from DATA statements and POKEd
into the appropriate RWTS subroutine to
change the marks it looks for.

B$ - altered only during configuration.

BF - buffer full, holds the status of the
sector buffer, set to 1 if the buffer is either
full or empty and to @ if neither; changed
only by “R/W SECTOR."”

BUF - buffer location, holds the address
where the RWTS is expecting to find the
page number of the sector; used by "INI-
TIAL IOB SETUP"” and “R/W SECTOR."
A (PEEK(BUF)-1)*256 will return the
address of byte zero in the last read sector.

CD - command code, used by the con-
troller and “TOGGLE READ / WRITE,”
holds the current RWTS command code;
only POKEd in by “INITIAL 10B SETUP”
(see RD, WR, and INIT)

CMD - Command code location, holds
the address where the RWTS is expecting
to find the previously stated command
code; used by “INITIAL I1OB SETUP."” A
POKE CMD,CD will change the IOB
command.

D1 - drive 1, set during configuration to
the drive number of the source drive; used
by “TOGGLE READ/WRITE".

The Best of Hardcore Computing Page 16

D2 - drive 2, same as above except for
target drive.

DOS - Disk Operating System, the num-
ber of sectors to read or write; initialized
to 16.

DRV - drive location, holds the address
where the RWTS is expecting to find the
drive number of the drive to be accessed,;
used by “INITIAL IOB SETUP" to change
the I0B drive number. A PEEK(DRV) will
return the drive last accessed.

DV - current drive, used by “INITIAL IOB
SETUP,” ‘TOGGLE READ/WRITE"” and
“MOVE S PHASES;" holds the drive num-
ber of the drive to be accessed next.

ERR - error code, used by “DISK ER-
ROR” to determine the error that has just
occured.

INIT - initialize command code, a
CD = INIT will set the command code to for-
mat the diskette.

10 - Input/Output location, normally holds
a 768 (set during configuration); CALLed
by “R/W SECTOR” to induce the RWTS
subroutine. To use a relocated RWTS, the
controller must have a 10=10+42
statement.

MB - maximum buffer page, holds the
last page of memory for the sector buffer;
used by “R/W SECTOR,” initialized (dur-
ing configuration) to 151 and should be
changed to 130 only when a 13-sector disk
is read or written.

OVL - old volume location, a PEEK(OVL)
will return the-volume number of the previ-
ously accessed (via “R/W SECTOR")
diskette.

PH - current phase, if “MOVE S
PHASES" is referenced (by the controller),
this variable must contain the disk arms’
current phase number (PH =2*TK).

RD - read command code, a CD =RD will
set the command to read the disk.

S - step, used to tell “MOVE S PHASES"
how may phases to step through (-120 to
120).

S1 - slot 1, set to the slot number of the
source drive during configuration; used by
“TOGGLE READ/WRITE.”

S2 - slot 2, same as above except for tar-
get drive.

SCT - sector number location, holds the
address where the RWTS is expecting to
find the sector to be accessed; used by
“R/W SECTOR” to tell the RWTS which
sector is to be read or written. A
PEEK(SCT) will return the last accessed
sector number.

SLT - slot number location, holds the ad-
dress where the RWTS is expecting to find
the slot number of the disk to accessed
next; used by “INITIAL IOB SETUP.” A
PEEK(SLT) will return the last accessed
disk’s slot number.

SO - slot number, used by "TOGGLE
READ/WRITE' and ‘“INITIAL |10B
SETUP;”, holds the slot number of the disk
to be accessed next.

ST - sector number, used by the con-
troller to tell “‘R/W SECTOR” what sector
number is to be read or written next,

TK - track number, used by the controller
to tell “R/W SECTOR" what track is to be
accessed next.

TRK - track number location, holds the
memory location where the RWTS is ex-
pecting to find the track to be accessed.
A PEEK(TRK) will return the last accessed
track number.

VL - volume number, used by the con-
troller to tell “TOGGLE READ / WRITE”’
(which passes it to “INITIAL IOB SETUP"")
the volume number of the disk to be ac-
cessed next.

VLS$ - altered only by ‘FORMAT DISK.”

VOL - volume number location, holds the
memory location where the RWTS is ex-
pecting to find the volume to be accessed.
A PEEK(VOL) will return the volume num-
ber last used by the controller.

WR - write command code. A CD=WR
will set the command to write.

Memory Usage

Before actually looking at some con-
trollers, let's say a few words about
memory usage.

Following, is a memory allocation table
for the various parts of Super |OB. It is ex-
tremely important to stay within the bound-
aries when writing a controller. Otherwise,
horrible things might happen (the least of
which would be the production of an incor-
rect copy).

$0800.$18FF (2048-6399) intended for the
Applesoft part of Super I0B.
$1900.$20FF (6400-8447) space allocated
for a relocated RTWS (RWTS.13 or
RWTS.16)

$2100.$26FF (8448-9983) BASIC variable
space.

$2700.396FF (9984-38655) used for the
sector buffer

First, notice the amount of space avail-
able for the BASIC program. The Super
IOB program as listed (with all REMs), ends
about 1200 bytes short of the final desig-
nated location. This means that the con-
troller (and all DATA statements) must fit
into this 1K area. In view of the space re-
quirement, the end of program should be
checked by typing:

PRINT PEEK(175) + PEEK(176)* 256
before a new controller is used.

If it has exceeded the 6399 limit, | sug-
gest DELeting all subroutines not refer-
enced by the controller and all REM lines
until it fits within the allocated space.

Howaever, if the program does NOT use
a relocated RWTS, then the extra 2K allo-
cated for an RWTS can be used for the
BASIC. In this situation, the end of the pro-
gram should only be checked with very
long controllers, since 3K ought to be
enough for any softkey operation.

Secondly, observe the 1534 bytes for
variables. This should be enough space for
the simple softkey procedure. It is impos-
sible to allocate more memory for variables
and use a relocated RWTS file. If you find
that you need more memory and the pro-
gram does not use RWTS.16 or RWTS.13,
then the LOMEM: 8448 statement in line
60 may be ommitted. This will allocate what
isn't used (by the BASIC program) of the
2K area reserved for the relocated RWTS
as variable space.

Never omit the ‘‘HIMEM:"”’ statement!

This could cause variables to overflow

into the sector buffer, thus making a faulty
copy.
Finally, with all this new knowledge we
are ready to scrutinize some sample con-
troller programs. Keep in mind that protec-
tion schemes can be used with one
another. Therefore, a more sophisticated
controller for Super 10B will probably be re-
quired for most softkeys. Even so, devolop-
ing new controllers isn’t difficult.

Standard Controllex

1000 REM STANDARD CONTROLLER

1010 TK = 0:ST = 0:LT = 35:CD = WR

1020 T1 = TK: GOSUB 490

1030 GOSUB 430: GOSUB 100:ST = §
T + 1: IF ST < DOS THEN 1030

1040 |F BF THEN 1060

1050 ST = 0:TK=TK + 1: IF TK <
LT THEN 1030

1060 GOSUB 480:TK = T1:5T = 0

1070 GOSUB 430: GOSUB 100:ST = §
T + 1: IF ST < DOS THEN 1070

1080 ST = 0:TK = TK + 1: IF BF =
0 AND TK < LT THEN 1070

1090 IF TK < LT THEN 1020

1100 HOME : PRINT : PRINT "'DONE
WITH COPY': END

Here is how the standard controller
works:

Unigque Variables

The following variables are used by the
controller exclusively. Other variables used
by the controller are for interaction with var-
ious subroutines in Super 10B.

LT - this variable holds the last track to be
accessed (it is the last track plus one). For
example, if line 1010 were to have an
LT =15 (instead of LT =35) then it would
only copy tracks 0-14.

T1 - holds the track number (TK) for the
transition of read to write and vice versa.

Line explanation

1000 - identifies controller.

1010 - initializes variables.
TK =0 - sets the starting track to zero.
ST =0 - sets the starting sector to zero.
LT =35 - sets the last track to 34.
CD = WR - sets command code to write

(WR).

The Best of Hardcore Computing Page 17

1020 - The read routine. It begins by sav-
ing the current track number and, then,
gets the source disk.

1030 - prints the current track and sector
number, reads in the sector and incre-
ments the sector number. If it is less than
DOS (in this case 16) then it reads another
sector.

1040 - if the sector buffer is full, it goes to
the write routine.

1050 - resets the sector number to zero
and increments the track number. If it is not
past the last track, it reads the new track.
1060 - this is the beginning of the write rou-
tine. It gets the write drive and starts at the
previously saved track (T1), sector zero.
1070 - prints the current track and sector
number, writes the sector to the disk and
increments the sector number. If it is not
finished with this track, it writes another
sector.

1080 - resets the sector number and incre-
ments the track number. If the sector buffer
isn't empty and it's not past the last track,
it writes another track.

1090 - if it is not done duplicating the disk
(i.e, not past last track), it reads some more
tracks.

1100 - tells user that everything is OK and
that the disk is copied.

Even though this controller only copies
normal DOS 3.3 disks, | recommend sav-
ing it anyway. This controller is the basic
(pun intended) building block for more com-
plex controllers.

Load the original Super IOB program

LOAD SUPER I0B

Type in the controller listed above.
Save this new program

SAVE I0B.STANDARD.CON

You now have the capability (I'm sure
you did before) to copy a regular diskette.
Because you probably don't think this is so
exciting, we’ll move on to the de-protection
of Castle Wolfenstein. | chose this game
because its controller is a simple example
of what a few modifications to the standard
controller can accomplish.

Castle Wolfenstein Controller

1000 REM CASTLE WOLFENSTEIN CONT
ROLLER

1010 TK = 3:5T = O.LT = 35:MB = 1
30:CD = WR:DOS = 13

1020 T1 = TK: GOSUB 490: GOSUB 36
P

1030 GOSUB 430: GOSUB 100:ST = S
T+ 2. IF ST < DOS * 2 THEN
1030

1040 IF BF THEN 1060

1050 ST = DTK = TK + 1: IF TK <
LT THEN 1030

1068 GOSUB 498:TK = T1:ST = 0: GOSUB
360

1070 GOSUB 430: GOSUB 188:ST = S
T + 1: IF ST < DOS THEN 1070

1080 ST = B:TK = TK + 1: IF BF =
0 AND TK < LT THEN 1070

1090 IF TK < LT THEN 1020

1100 HOME : PRINT "EVERYTHING O.
K. NO DOS ON COPY**: END

10010 PRINT CHR$ (4)""BLOAD RWTS
13,A$1900""

Castle Wolfenstein uses 'Strangely
Numbered Sectors” as its protection
scheme. Luckily, they aren’t so strange
that a complex algorithm is needed to cal-
culate the next number. Instead, they are
merely even-numbered DOS 3.2 sectors
(0-24).

When 13-sector DOS gets these sector
numbers, it doesn’'t accept them and
returns with I/O error. But the 13-sector
RWTS doesn't care about the actual num-
ber on the sector, as long as it matches up
with the sector number you want to access.
Thus, all one has to do is read with the
strange sector numbers and write with the
normal ones,

Here is a line-by-line explanation of the
differences that make this controller
sucessful:

1000 - identifies controller.

1010 - start at track three (bypass DOS
tracks) and set MB and DOS to their
13-sector values.

1020 - since we want to use RWTS.13 to
read with, swap it in.

1030 - counts from 0 to 24 by two's.
1060 - swaps the normal RWTS back into
its original location for the write ahead.
1100 - tells the user that the copy has no
DOS on it.

10010 - BLOADs the 13-sector RWTS at
$1800.

As noted in line 10010, once the copy
has been made there will be no DOS on
the de-protected version. This isn't a
problem as long as you don't boot with it.

Super IOB BASIC program

10 REM #adkmsrkidmdkhdidhihdkihdkiksd

20 REM #* SUPER IOB a4

30 REM #+ BY RAY DARRAH *k

40 REM Wkkakkirkikikhdkhhrikidnn

50 REM SET HIMEM BELOW BUFFER AND
SET LOMEM ABOVE THE BLOADED RWTS

60 LOMEM: 8448: HIMEM: 9983: GOTO
10010

70 REM INITIAL IOB SETUP

80 POKE BUF,39: POKE DRV,DV: POKE
YOL,VL: POKE SLT,SO * 16: RETURN

90 REM R/W SECTOR

100 BF = 0: POKE TRK,TK: POKE
SCT,ST: POKE CMD,CD: CALL I0:
POKE BUF, PEEK (BUF) + 1: IF
PEEK (BUF) = > MB THEN BF = 1

110 RETURN

120 REM MOVE S PHASES

130 POKE 49289 + SO * 16 + DV,0:
POKE 49289 + SO » 16,0: A = PH -
INT (PH / 4) = 4: POKE 1144,128
+ A: POKE 811,128 + § + Az POKE

813,50 * 16: CALL 810: POKE
49288 + 50 * 16,0: PH = PH + S:
IF PH <O THEN PH = 0

140 RETURN

150 REM 16 SECTOR RWTS ALTERATIONS

160 REM IGNORE CHKSUM & END MARKS

170 POKE 47405,24: POKE 47406,96:
POKE 47497,24: POKE 47498,96:
RETURN

180 REM ALTERED ADDRESS MARKS

190 READ A1,A2,A3: POKE 47445,A1:
POKE 47455,A2: POKE 47466,A3:
RETURN

200 REM ALTERED DATA MARKS

210 READ A1,A2,A3: POKE 47335,A1:
POKE 47345,A2: POKE 47356,A3:
RETURN

220 REM NORMALIZER

230 POKE 47405,208: POKE 47406,19:
POKE 47497,208: POKE 47498,183:
POKE 47445,213

240 POKE 47455,170: POKE 47466,150:
POKE 47335,213: POKE 47345,170:
POKE 47356,173: RETURN

250 REM 13 SECTOR RWTS ALTERATIONS

260 REM IGNORE CHKSUM & END MARKS

270 POKE 47530,24: POKE 47531,96:
POKE 47438,24: POKE 47439,96:
RETURN

280 REM ALTERED ADDRESS MARKS

290 READ A1,A2,A3: POKE 47478 ,A1:
POKE 474688,A2: POKE 47499 ,A3:
RETURN

300 REM ALTERED DATA MARKS

310 READ A1,A2,A3: POKE 47368,A1:
POKE 47378,A2: POKE 47389,A3:
RETURN

320 REM NORMALIZER

330 POKE 47530,208: POKE 47531,183:
POKE 47438,208: POKE 47439,19:
POKE 47478,213

340 POKE 47488,170: POKE 47499,181:
POKE 47368,213: POKE 47378,170:
POKE 47389,173: RETURN

350 REM SWAP RWTS AT $1900 WITH THE
ONE AT $8800

360 POKE 253,25: POKE 255,184: POKE
224,8: CALL B832: RETURN

370 REM FORMAT DISK

380 A$ = "VOLUME NUMBER FOR
COPY=>254"": HOME: GOSUB 450:
HTAB32: INPUT "';VL$: VL = VAL
(VL$): IF VLS = "' THEN VL = 254

390 IF VL > 255 OR VL < O THEN 380

400 POKE CMD,INIT: SO = $2: DV = D2:
A$ = "INSERT BLANK DISK IN SLOT
" 4+ STR$ (52) + ", DRIVE " + STRS
(D2): GOSUB 470

410 GOSUB 80: HOME: A$ =
PEORMATING": FLASH: GOSUB 450:
NORMAL: CALL 10: VL = O: RETURN

420 REM PRINT TRACK & SECTORH

430 VTAB 3: HTAB 10: PRINT
HTRACK=>"TK SPCC 2)"'SECTOR=>"'ST
SPC(2): RETURN

440 REM CENTER MESSAGE

450 HTAB 21 - LEN (A$) / 2:
PRINTAS; : RETURN

460 REM PRINT MESSAGE AND WAILT

470 HOME: VTAB 11: GOSUB 450:
VTAB13: A$ = '"PRESS ANY KEY TO
CONTINUE": GOSUB 450: WAIT
-16384,128: GET AS: RETURN

480 REM TOGGLE READ/WRITE

490 €D = (CD=1) +1: IF CD = RD

The Best of Hardcore Computing Page 18

THEN A% = '"'INSERT SOURCE DISK.'': SO
= 81: DV = D1: GOTO 510

500 A$ = ""INSERT TARGET DISK.'": SO =
$2: DV = D2

510 IF D1 = D2 AND S1 = S2 THEN GOSUB
470: HOME

520 VTAB 1: HTAB 1: PRINT SPC(39);:
FLASH: A% = "READING': IF CD =
WR THEN A$ = "WRITING"

530 GOSUB 450: NORMAL: GOTO 80

10000 REM CONFIGURATION TIME

10010 REM BLOAD RWTS HERE

10020 IF PEEK (768) * PEEK (769) =
S07 THEN 10060

10030 HOME: A% = "'* SUPER 108 *'':
GOSUB 450: PRINT: PRINT: A% =
""CREATED BY RAY DARRAH": GOSUB
450

10040 VTAB 10: A$ = "INSERT SUPER
I10B DISK'": GOSUB 450: PRINT:
PRINT: PRINT: A% = ""PRESS ANY
KEY TO CONTINUE': GOSUB450: WAIT
- 16384,128: GET A%

10050 PRINT: PRINT CHR$ (4)'"BLOAD
I0B.0OBJO,A$300"

10060 TK = ST = VL = CD = DV = SO:RD
= 1:WR = 2:INIT = 4: ONERR GOTO
10220

10070 10 = 768: SLT = 779: DRV =
780: VOL = 781: TRK = 782: SCT
=783: BUF = 787: CMD = 790: OVL
=792

10080 HOME: DOS = 16:MB

10090 VTAB 8: PRINT: A$
"ORIGINAL": 52 = 6: D2 = 1:
GOSUB 10140: 81 = §2: D1 = D2

10100 PRINT: PRINT: PRINT: D2 =(D2 =
1) + 1: A% = "DUPLICATE

"y GOSUB 10140

10110 A% = ""FORMAT BACK UP FIRST? N"
+ CHR$ (B): HOME: VTAB12: GOSUB
450: GET A$: IF A% = "'Y'" THEN
GOSuUB 380

10120 HOME: A% = "INSERT DISKS IN
PROPER DRIVES.'': GOSUB 470:
HOME: GOTO 1000

10130 REM GET SLOT AND DRIVE#

10140 GOSUB 450: PRINT: PRINT: PRINT
TABC 10)'"'SLOT=>"52
SPC(B)"DRIVE=>"D2;

151

10150 HTAB 16: B$ = "7'': GOSUB
10180: 52 = VAL (A%)
10160 HTAB 32: B$ = "2": GOSUB

10180: D2 = VAL (A$): RETURN

10170 REM GET A KEY

10180 GET A$: IF (A$ < '"1" OR A$ >
B%) AND A$ < > CHR$ (13) THEN
10180

10190 IF A$ = CHR$ (13) THEN A% =
CHR$ (PEEK (PEEK (40) + PEEK
(41) » 256 + PEEK (36)) - 128)

10200 PRINT A%;: RETURN

10210 REM DISK ERROR

10220 ERR = PEEK (222): IF ERR >15
AND ERR < 254 THEN POKE216,0:
CALL 822

10230 1F ERR = 254 THEN PRINT "TYPE
AGAIN PLEASE:'': PRINT: RESUME

10240 1F ERR = 255 THEN STOP

10250 IF ERR = O THEN A% =
“INITIALIZATION ERROR'

10260 IF ERR = 1 THEN A$ = "WRITE
PROTECTED"!

10270 IF ERR = 2 THEN A$ = "VOLUME
MISMATCH ERROR'

4 THEN A$ = "DRIVE

8 THEN A$ = "READ
GOSUB 450: PRINT CHRS$

FOR MARKS

Super I0B Checksums

10280 IF ERR =
ERROR''
10290 IF ERR =
ERROR"'
10300 VTAB 20:
(7): END
62000 REM DATA
10 - $BADD
20 - $9B13
30 - $4D3B
40 - $AD92
650 - $C899
60 - $1FBA
70 - $0061
80 - $835F
90 - $E1T1
100 - $ADOE
110 - $578B6
120 - $8472
130 - $617E
140 - $OF1F
150 - $F1B3
160 - $C59A
170 - $6DEC
180 - $56EA
190 - $D2AC
200 - $1EEF
210 - $C7D5
220 - $7B7E
230 - $F7E4
240 - $596A
250 - $50B9
260 - $7DBO
270 - $AD47
280 - $E373
290 - $4B8B
300 - SFFE7
310 - $4DD1
320 - $4DA3
330 - $C76F
340 - $01F0
350 - $FOAE
360 - $5452
370 - $C2A5
380 - $8AS57
390 - $65AE
400 - $15FA
410 - $9A03
420 - $FF36
430 - §713A
440 - $0A35
450 - $76B5
460 - $51E2
470 - $CCA2
480 - $7ADO
490 - $EEB8
500 - $3A54
510 - $5FC8
520 - $D7BE
530 - $A4CF

10000 - $7C7C
10010 - $EBB3
10020 - $255F
10030 - $97DE
10040 - $7273
10050 - $5F85
10060 - $3118
10070 - $95D0
10080 - $B791
10090 - $399B
10100 - $1951
10110 - $E187
10120 - $A960
10130 - $OFS5E
10140 - $ABAD
10150 - $3AAD
10160 - $7CEA
10170 - $A5S8F
10180 - $28E4
10190 - $2E00
10200 - $64EA
10210 - $056B
10220 - $7BA4
10230 - $DB00
10240 - $DB1F
10250 - $03D9
10260 - $7F7D
10270 - $214C
10280 - $CDCD
10290 - $EE7B
10300 - $B2DB
62000 - $C89F

Source Code

1000 *
1010 * Super |0B machine routines
1020 *

1030 * BY RAY DARRAH

1040 *
1050
1060 RWTS.B800
0 AWTS @3$Bao0
1070 INVOKERROR EQ $D412 ROUTINE THAT
CAUSES BASIC TO DO THE ERROR CONTAINED IN X

EQ $03D9 ENTRY POINT T

1080 RWTS.1900 EQ $1E0D ENTRY POINT T

0 THE RWTS AT $1900

1090 SEEKABS EQ $BYA0 ENTRY POINT T
0 THE SEEKABS ROUTINE AT $B800

1100 BAS.ERR EQ 222 :BASIC ON ERR
ERROR CODE

1110 SWFRM .EQ $FC :EXCHANGE FR
OM PARAMTER

1120 SWTO EQ $FE ;EXCHANGE RW
TS 'TO' PARAMETER

1130 PAGES -EQ $EO ;NUMBER OF PA
GES OF MEMORY TO EXCHANGE

1140 .0R $0300 STARTS AT PAG
E THREE

1150 .TF 10B.0BJO

1160

170 =

1180 = CALL RWTS *
1190 *

1200

121010 LDA /TABLETYP ENTRY POINT

FOR CALING THE RWTS THROUGH BASIC
220 LDY #TABLETYP A POINT TO
THE 0B TABLE

1230 JSR RWTS.BB00 GO TO THE RW
TS AT $B800

1240 BCS DOS.ERR IF THE CARRY
SET THEN CAUSE BASIC ERROR

1250 RTS OTHERWISE, AL
L IS WELL S0 RETURN

1260 TABLETYP HS 01 TYPE OF TABLE
{1=10B}

1270 SLT HS 60 SLoT

1280 DRV HS 01 DRIVE

1290 VOL HS 00 VOLUME

1300 TRK .HS 00 TRACK

1310 SCT HS 00 SECTOR

1320 DCTPTR DA DCT POINTER TO TH
E DEVICE CHARACTERISTICS TABLE

1330 BUFFERLD HS 00 ALWAYS MAKE
LSB OF BUFFER POINTER ZEROQ!

1340 BUF HS 27 SECTOR BUFFE
R PAGE POINTER

1350 NOTHING HS 00 NOT USED
1360 BYTCOUNT .HS 00 BYTE COUNT FO
R PARTIAL SECTOR (0=256 BYTES)

1370 CMD HS 00 COMMAND COD
E (0=SEEK)

1380 RWTS.ERR .HS 00 ERROR CODE T
HA THE RWTS.BB00 RETURNS WITH

1390 OVL HS 00 VOLUME NUMB
ER OF LAST ACCESSED DISK

1400 OLDSLT .HS 60 SLOT PREVIOUS
LY ACCESSED

14100LDDRY .S 01 DRIVE PREVIOU
LSY ACCESSED

1420 OCT HS 00 DEVICE TYPE O
F DEVICE CHARACTERISTICS TABLE

1430 PHASES HS 01 PHASES-1 PER
TRACK, (0 OR 1)

1440 MOTORCNT ~ _HS EFDS MOTOR-ON TIM
E COUNT

1450 DOS.ERR LDARWTS.ERR DOS HAS HAD A
N ERROR, GET THE ERROR CODE

1460 LSR DIVIDE IT BY 16
1470 LSR

1480 LSR

1490 LSR

1500 TAX TRANSFER IT T
0 X 50 BASIC WLL INDUCE THE FALSE ERROR CODE
1510 JMP INVOKERROR CAUSE A BAS
IC ERROR

1520

The Best of Hardcore Computing Page 19

1530 *
1540 *
1550 *
1560
1570 MOVPHASES LDA #$00 ROUTINE TO SE
T UP THE REGISTERS BEFORE CALLING SEEKABS

1580 LDX #3500 X AND A HAVE
DUMMY NUMBERS THAT WILL BE POKED INTO BY
""MOVE S PHASES™

1590 JMP SEEKABS

1600
1610 *
1620 *
1630 *
1640
1650 BASICERR ~ LDX BAS.ERR BASIC HAS MAD
E AN ERROR S0 CAUSE THE ERROR NUMBER AT 222

MOVE THE DISK ARM *

CAUSE ERROR IN CONTROLLER *

1660 JMP INVOKERROR

1670 =

1680 * POP OFF RETURN *
1690 *

1700 POP PLA ROUTINE TO PO
P OFF ONE RETURN (BASIC) ADDRESS

1710 TAY

1720 PLA

1730 LDX BAS.ERR+1 GET WHAT THE
STACK WOULD BE IF THE GOSUB WASN'T THERE
1740 XS PUT THAT AS
THE STACK POINTER

1750 PHA

1760 TYA RESTORE THE
LAST RETURM ADDRESS

1770 PHA

1780 RTS

1790

1800 *

1810 * EXCHANGE RWTS's *
1820 *

1830

1840 LDY #0 ;ZERO LSB's
1850 STY SWFRM :AND HAVE Y
AT ZERO FOR START

1860 STY SWTO

1870 MOVE.PAGE LDA (SWFRM).Y GET A BYTE
1880 PHA JAND SAVE T
1890 LDA (SWT0),Y ;GET THE BYTE
WHERE THE SAVED ONE GOES

1900 STA (SWFRM),Y ;AND STORE |
T WHERE THE SAVED ONE WAS

1910 PLA JGET THE SAVE
D BYTE

1920 STA (SWTO),Y AND STORE IT
WHERE IT GOES

1930 INY ;DONE WITH A
PAGE

1940 BNE MOVE PAGE ;NO KEEP WOR
KING ON IT

1950 ING SWFRM+1 ;GET NEXT MSB

1960 INC SWTO+1
1970 DEC PAGES

HE NUMBER OF PAGES TO MOVE
1980 BNE MOVE.PAGE
, MOVE ANOTHER PAGE

1990 ATS

:DECREMENT T
JIF NOT DONE
:FINISHED, RTS

Super I0B hexdump

A903A00A20D903B0 $BD35
166001 6001000000 $9CF5
1B 030027 00000000 $4320
0060010001 EFDBAD $55A7
17034A4A4A4AAAAC $B428B
12 D4 A9 00 A2 00 4C AD $8038
BOAGDEA4C 12D4 68 A§ $6E1C
68 A6 DF 9A 4698 4860 $FDDY
AD00B4FCB84 FEB1FC $3777
48 B1FES1FC 68 91 FE $AABY

C8DOF3E6FDEGFFCE $921F
EO DO EB 60 $3160

0300:
0308:
0310:
0318:
0320:
0328:
0330:
0338:
0340:
0348:

0350:
0358:

A quick and easy way to

Unlock Hyperspace Wars |

Requirements:

48K A][+ with Applesoft in ROM
MUFFIN

HYPERSPACE WARS

A Blank Diskette

Hyperspace Wars is published by Con-
tinental Software (copyright 1980) and con-
sists of two games on a single disk:

1) 48K TREK, a text “‘Star Trek" type of
strategy arcade game.

2) 3-D Space Battle, one of the pioneers
in “real-view'' space arcades. In this game,
the player is shown an “‘out-the-window’’
view in which stars move and aliens
abound, zooming towards and away from
the player.

The following sections will first explain
the technique used to unlock Hyperspace
Wars, and then provide a step-by-step
method that will make it easy for anyone
to do.

Hyperspace Wars is on a DOS 3.2 disk.
In order to run on DOS 3.3 systems, the
game requires either the BASICS disk or
the BOOT 13 program from the master disk.

The unlocking technique

To discover what locking method was
used, Hyperspace Wars was booted and
the HELLO program was loaded.

The next step was to enter the monitor

By Robb Canfield

and then compare the DOS in memory to

a normal 3.2 DOS. To do this, the Hyper-

space Wars DOS was moved down to

$4800, using the monitor move command:
$4800 < B800.BFFFM.

Then a 3.2 disk that had been upgrad-
ed to boot on either a 3.2 or 3.3 systemn was
placed in the drive. After the disk had boot-
ad, the two DOSs’ were compared.

The only differences found were in the
address marks and in the translate tables.
Hyperspace Wars uses a data mark of D6
instead of the normal DOS 3.2 mark of D5.
The translate table had two bytes switched
(24 and 60). Another byte was changed
from D6 to DS5.

It was also necessary to clear the check-
sum value. Since MUFFIN has a 3.2 image
of the DOS Read-Write Track/Sector
(RWTS) in it (starting at $1900), all that was
needed was to make a few changes and,
voila an unlocked (normalized) 3.3 version
of the game.

You can do it

An easy guide for normalizing Hyper-
space Wars resulted from the methods dis-
cussed above.

1) Boot the 3.3 master disk to insure that
there is a good 3.3 DOS in memory.

2) Clear the usable memory and make
sure you are in Applesoft by typing:

FP

3) Initialize a disk with the HELLO as the
HELLO program. Enter:

INIT HELLO

Set this disk aside for use in step 8.

4) BLOAD MUFFIN from your system
master disk.

BLOAD MUFFIN

5) Enter the monitor by typing:

CALL -151

6) And make the following changes to
MUFFIN (press return after each line):

1A08:D6

1A76:D6

1A63:18

1BD5:60 24

1DA6:D5

The first two changes are to the address
marks, and the third change clears the
checksum. The last three bytes change the
Read-Translate table.

7) From the monitor, run MUFFIN by en-
tering:

803G

8) Use the initialized blank disk from step
3 as the target disk to put your copy of
Hyperspace Wars on.

9) When asked for the file name, enter
an equal sign (=) and copy over the exist-
ing HELLO name.

You now have a normalized copy of
Hyperspace Wars.

<

The Best of Hardcore Computing Page 20

Taking a peek at

Boot Code Tracing

Requirements:

Knowledge of machine language

Multi-Disk Catalog by Sensible Software

Initialized blank disk with HELLO
program deleted

If you have a little knowledge of machine
language programming, and a good meas-
ure of perseverance, you can defeat the
locking scheme used in a large group of
programs and capture them on standard
DOS. These are the kinds of programs that
boot and run with no subsequent disk ac-
cess. Most games and many utility and
business programs fall into this category.

THE THEORY

No matter what locking scheme is used,
the disk must boot on a standard Apple.

If we could somehow step through the
boot process, get everything locaded, and
then stop just before starting the program,
we would be.able to save the whole thing
and run it under standard DOS.

The Apple boot process starts with boot
0 in the disk controller ROM. This short
machine language program BLOADS track
0, sector 0 (containing boot 1 of the disk
being booted) at locations $800 through
$8FF, and then jumps to $801 to execute
boot 1.

Boot 1 reads boot 2, and the process
continues through successive boot stages
until finally the main program is loaded and
run.

ABOUT RESET

The Reset routine is at $FF59 in the mo-
nitor ROM. It performs a function similar
to pushing the reset button. If called, a
Reset cycle is performed and any execut-
ing program will be stopped.

GETTING STARTED

To illustrate this unlocking procedure,
the program Multi-Disk Catalog lll, by Sen-
sible Software, will be used. Even though
this program has been around for a while,
it is an excellent and useful utility.

Dozens of other programs which use a
virtually identical boot sequence were ex-
amined. They can be unlocked using this
same technigue with only a few changes
(try one of your own single-load programs
if you don’t have Multi-Disk Catalog).

Have an initialized slave diskette ready

By Mycroft

and make sure there is a writeprotect tab
on the disk you are trying to unlock.

THE UNLOCKING PROCESS

Turn on your Apple with the disk drive
empty, and push reset to stop the drive.
This will keep the Apple’s memory clear.
NOTE: Commands will be on a separate line
and printed exactly as you should enter
them. Press the retumn key after each line.
If a command has already been listed, it will
be referred to but not listed again.

Now insert the locked disk and enter the
monitor.

CALL-151

MODIFYING BOOT 0

Since boot 0 is in ROM on the controller
card, it cannot be directly modified. The so-
lution is to move it to RAM, using the mo-
nitor's Memory Move routine so that it can
be changed.

The new location should be some place
in RAM where the boot will not be overwrit-
ten in any of the successive boot stages.
Memory just below DOS is usually safe
since many locked programs use only
slightly modified versions of normal DOS.

Always move the boot 0 code to a page
boundary that corresponds to the slot used
by your controller card. (IE. for slot 6 -
$9600, $8600, $7600, etc. or for slot 5 -
$9500, $8500, etc.) The reason for this is
the boot 0 code contains a routine which
finds the slot where your controller card re-
sides. It does this by calling a return code
in the F8 ROM and extracting the return
address from the stack to locate the page
boundary. The boot O code itself is relocat-
able (will run anywhere in memory).

THE FIRST STEP

Assuming your disk controller card is in
slot 6, the code for boot O starts at $C600
and extends through $C6FA. Move the
boot 0 code from the controller card to
page $96 in memory.

9600<C600.C6FFM

Change the exit jump from boot 0 at
$96F8 to point to $9801.

96FA:98

Change memory at $9801 to point to the
reset routine.

9801:4C 59 FF

Run the boot 0 code.

9600G

The drive will start, and in a second or

two there should be a beep. The monitor
prompt will appear on the screen. Turn off
the drive by typing:

COE8

This process will be repeated for each
successive boot stage. Whenever there is
an exit jump to a new code section, put in
a jumnp to reset to stop it. Don’t worry about
what the code is doing at this point. Look
mainly for exit jumps.

THE BOOT 1 CODE

Examine the boot 1 code.

801L

This code relocates itself to memory
page two, loads boot 2, and finally jumps
to $301 at $841.

Move this code so it can be modified.

9800<800.8FFM

Fix the exit jump to go to $9301.

9843:93

Change memory at $9301 to point to the
reset routine.

9301:4C 59 FF

One other byte in boot 1 must be
changed so that our modified code is ex-
ecuted properly.

9805:98

Run the code at $9600 again and stop
the drive when you get the monitor prompt.

BOOT 2

The next stage of the boot normally
starts at $301. Move this code to $9300.

9300 < 300.3FFM

Take a look at the disassembled listing
of the code beginning at $9301.

The exit jump from this stage can be
seen at $9343, but it is disguised as an in-
direct jump through page 0 location $3E.

If you examine the code in this boot
stage beginning at $931F, you will find that
this indirect jump is used repeatedly to go
to $250, but ultimately the indirect jump ad-
dress is changed to go to the next boot
stage. This change occurs at $933A-$9341.

The final jump is determined by the byte
stored in memory location $3CC, which the
program increments by 1 before executing
the final indirect jump.

Look at the byte at location $3CC.

$3cc

You will find that it contains the value $36
(other programs commonly use $B6). This
is the high byte of the jump-to address (the
low byte has value $00). The program
increments this value by 1, so the final JMP

The Best of Hardcore Computing Page 21

address is $3700.

The boot should do all the jumps when
it is going to $25D, but stop before it makes
the final jump to $3700.

AN INDIRECT JUMP

Zero page location $3E contains the
value $5D for all the indirect jumps except
the final one. We only need to see if this
value changes and, if it does, stop the boot.
This short subroutine can handle the in-
direct jump.

9000:A9 5D C5 3E D0 03 4C 5D

9008:02 4C 59 FF

The source code for this routine wouid
look like:

9000-A9 5D
8002-C5 3E
9004-D0 03

Load value.
Same?
No, go RESET

LDA #$5D
CMP $3E
BNE $9009
9006-4C 5D 02 JMP $025D Yes, go on.
9009-4C 59 FF JMP $FFS9 Jump RESET.

Change the boot code to jump to this
subroutine.

9343:4C 00 90

Run the boot 0 code.

BOOT 3

After the beep, stop the drive and exa-
mine the code beginning at $3700. The
next exit jump is at $3747, and is a jump
to $1B03. Change the jump to point to
reset.

3747:4C 59 FF

WRITING TO ROM

Now for the sneaky part. The code that
was moved to memory page $93 ($9300)
was responsible for reading this portion of
the boot. But since $3747 was just
changed, it must not be overwritten when
the boot starts over again. To avoid that
happening, change byte $93CC, so that a
dummy write is done by letting it ‘write” to
the ROM (read only memory)!

93CC:D0

Also change the bytes at $9315 and
$933E to reference this location instead of
$3CC.

9315:93

933E:93

The ‘*write” for the next boot stage will
begin at $D000, and is ineffectual except
to keep the drive running and in the proper
read mode.

Change the subroutine we put in at
$9000 to go to the modified next stage.

9009:4C 00 37

Run boot 0 again. When you hear the
beep, the drive will stop by itself. You're
almost finished.

Start listing the program at $1B03, look-
ing for the next major exit jump. You should
find it at $1C25. It is a jump to $1E54,
Change $1C25 to point to reset.

1C25:4C 59 FF

Run the code at $1B03.

1B03G

List the code beginning at $1E54. There

is an immediate jump to $9D84. List from
$9D84.

LANGUAGE CARD?

At $9DE4 and $9DE7 are two indirect
jumps, through $9D5E and $9D5C respec-
tively.

A careful examination of the code, be-
ginning at $9D84, reveals that the first in-
direct jump is taken by systems equipped
with language cards (RAM cards), and the
second for those without.

No matter, the second indirect address
will ultimately be jumped to whichever sys-
tem you have. To find out what it is, change
the indirect jump at $9DE7 to point to reset.

9DE7:4C 59 FF

Run the code at $9D84.

9D84G

When you hear the beep, examine the
bytes at $9D5C and $9D5D.

9D5C.9D5D

The screen will display (low byte first) the
address indirectly jumped to as $33D5. Be-
gin listing from $33D5, and you should find
the next exit jump at $34BC. It goes to
$00FD. Change the jump at $34BC to point
to reset.

34BC:4C 59 FF

Run the code at $33D5.

33D5G

The disk drive will start, and the last seg-
ment of the program will be loaded. If
everything worked correctly, you should
hear a beep, the drive will stop, and the
screen will be filled with garbage.

THE PROGRAM START

Normally, the program would next jump
via the page zero location which was just
changed at $34BC to the start of the Multi-
Disk Catalog main program. Find the des-
tination of the next jump by examining the
code at $00FD.

00FDL

To makae it difficult, the software protec-
tors have put one last obstacle in your path.
$00FD takes an indirect jump through page
zero locations $4E and $4F to the start of
the program. Unfortunately, an examina-
tion of these locations to find out where the
jump goes isn't possible because they are
changed when a Reset cycle is executed.

Examine the code at $348F.

348FL

The bytes at locations $4E and $4F are
set from $33C0 and $33C1, respectively.
Examine these locations.

33C0.33C1

The starting address (low byte first) of the
main program is $1294.

The program occupies memory from
$800-$18FF, $5000-$5CFF, and
$9D00-$BFFF. (Find this out by scrolling
through memory to identify program state-
ments and data, often a trial and error
process. If there is too much, no real harm
is done, but too little and the program will
not run.)

The last step is to capture the program
under normal DOS.

MOVING THE MEMORY

Warm booting a slave diskette will over-
write memory locations $800-$8FF and
$9600-$BFFF, but everything from
$900-$95FF will be unaffected. Move the
‘lower” part of the program ($800-$1800)
up and out of the way of the boot, and put
it adjacent to the “middle” part.

3F00 < 800.18FFM

Move the “top” part of the program
down.

5D00 < 9D00.BFFFM

Add this relocation routine so that when
the program is BRUN everything will be put
back in the proper place.

3EDO0:00 00 A9 5D 85 3D A9 7F

3JEDS8:85 3F A9 9D 85 43 20 F3

3EEOQ:3E A9 3F 85 3D A9 4F 85

3EE8:3F A9 08 85 43 20 F3 3E

3EF0:4C 94 12 AO FF 84 3E C8

3EF8:84 3C 84 42 20 2C FE 60

The source code for this routine looks
like:

3ED2-A9 5D LDA #$50 Set up
3ED4-85 3D STA $3D address
3ED6-AQ TF LDA #87F data to
3ED8-85 3F STA 83F move top
3EDA-AQ 9D LDA #39D part of
3EDC-85 43 STA %43 program.
3EDE-20 F3 3E JSR $3EF3 Call move.
3EE1-A9 3F LDA #83F Do it again
3EE3-85 3D STA 83D for the
3EE5-A9 4F LDA #34F bottom
3EE7-85 3F STA §3F part of the
3EES-A9 08 LDA #%08 program.
3EEB-85 43 STA $43

3EED-20 F3 3E JSR $3EF3 Call move
3EF0-4C 94 12 JMP $1294 Run Program
3EF3-A0 FF LDY #8FF Get things
3EF5-84 3E STY $3E ready
3EF7-C8 INY before
3EF8-84 3C STY $3C calling the
3EFA-84 42 STY 842 monitor
3EFC-20 2C FE JSR $FE2C move
3EFF-60 RTS routine.

THE FINAL TEST

Finally, remove the protected disk from
the drive and replace it with the normal
DOS (slave) disk. Warm boot it by typing:

6 CTRL-P

Do not type "CTRL P, just hold the ctrl
key down and tap the “P" key, then
release the ctrl key and press return.

When the boot is complete, save the
code as a binary or “B” type file.

BSAVE MDC,A$3ED2,L$412E

You now have an unlocked program that
will BRUN normally, or it can be cus-
tomized as you see fit.

Try this procedure with your other ‘one-
shot” load programs. You will probably be
surprised at how often it works, with a lit-
tle sleuthing. That is where the persever-
ance part comes in.

The zero page locations that are
changed by the reset routine are:

$20-32B, $31, $33-33F, $40-$49 and
$4E-$4F.

<

The Best of Hardcore Computing Page 22

Introduction to ‘Pa?ms’

This is our most complete and
updated list of parameters for the
four leading bit-copy programs:
Locksmith, Nibbles Away, Copy
Il + and Back-it-Up.

Although the instructions for the
use of these parms are part of their

documentation, additional as-
sistance is offered in the articles
accompanying each parm list.

If any particular software pack-
age is not included in the parms list
of your favorite bit copier, it can
either be copied without parms, or

no parms have been received by us
for that package.

To save space, the names of the
publishers of the programs (whose
copy parms are found in any of the
lists that follow) have been
abbreviated.

Table of Abbreviations of Publishers

S T Apple Computer
BB s i i R Anthro-Digital
Al enesns Adventure International
POy M e e Tt Avante Garde
ABN. ..o Action-Research Northwest
ARSI el S el ARS Publications
ARBT oo chlenims v o sian Artsci
ARW i D shnivsn st Artworks
AST v e Apple Software Technology
e Avalon Hill
A e S Addison Wesley
B s Do T e e Budgeco
BE R i it e v Bulls Eye Software
BP:: inceias s an Beamon Porter
BS. s Broderbund Software
BUS v wosmtsan s Business Solutions
(] r Loih o L S CBS Software
AL s Computer Advanced |deas
e 0 Loy SRl M Cavalier Computer
GRS e T m e CE Software
GG s s e 2277
CP i staminieir i California Pacific
ERS. .o s Counter Point Software
CoBm et Computer Solutions
e . Contentinental Software
O T b T Compuware
CNDc TET e s e et Cedex
PAT st S Data Transforms
DR o it s e DLM
PG s o msenmsontts spaiolitmia s Data Most
[B15) izt s ey i e o Datasoft
BSS.... Decision Support Software
0 Sl = 0 el | Dynacomp
EAL:: siin s Educational Activities Inc.
 of o R Educational Courseware
ElNicmnm aanmnrs: domman e Einstein
EP e vmaserns weniniscils Sisaseit & Epyx

ELV: i svensm amsmatan e & Eureka
EW - e simsmsmon s, @ Eduware
o B NS Frontier Computing
e T Gebelli
AL oot e e i el HAL
HOB s s s s s e il Hobar
HOW Siinieain sanimman s Howardsoft
FING s momuioo Gomation vhsam Hayden
T sernonts., pist i High Technology
IEP... v e Image Computer Products
IDSI. . .Innovative Design Software Inc.
[s) e S e e Insoft
INS: sinemns siswiann i Instant Software
VS W iz siimis smmsraileacin asiatin et el ISM
WL oo i SHR e i Krell
I e T B e Kensington
[[e A R I L Level Ten
LGN, i | S Learning Company
|t B W S LJK Enterprises
ENS ooz, savsiies Lightning Software
BOB ot s shmpisia Logidisque
L e Lotus
MAG........ Micro Applications Group
ME: ettt et tra s Micre Fun
NIE e, ey Bt mh oo vy o Megahaus
MIS L L s e Microsoft
M atsmnamay b s Micro Lab
MM i crammtioeg: i ¢ Micromax
MB: v v sossmss Mind Systems
MSP . ey s s i Micro-Sparc
Pk e e s b b L) Muse
MWD......... Micro Ware Distributors
MWS... s csmamiass Midwest Software
D i o T i S Odesta
] e R Origin Systems
PBS. . cum Personal Business Systems
PDS it e o nisse Picadilly Software

o e e Penguin Software
RE o Program Design Inc.
] e e Phoenix
BIE: 4 mrn s s, il ol Picadilly
QS s omas Shans Quality Software
SAA. State of the Art Accounting
L2 R e Howard W. Sams
BOL it e Systems Design Lab
o =l D e B Sensible Software
SR e b M Sof/Sys Inc.
B R s s oreteel dnos (EE Sir-Tech
Sksavcne saraenis oL Sub Logic
] e Smith Micro Software
ST i siavonsiam iz Sentient Software
SO st vy Sierra On-Line
BPE.L o Software Publishing Corp.
SPNE S I Spinnaker Software
=] 2] I e R S Spectrum
SRS e s e Sirius Software
SEhEs Sl e Strategic Simulations
SSBin vmn Sterling Swift Publishers
SEM . ciies wimbanes e e Transcend
BN S s Silicon Valley Systems
S b habion b i) Stoneware
b A O = Lo Synergistic Software
TER:: il suie s S ss &5 Terrapin
TS i i anle s Turnkey Software
B = e e R TSR
| O ey Ultrasoft
]3| SoromBe b cutorehbes Unknown publisher
(UL o et S S o USA
NG .. chaasis sl Virtual Combinatics
NP s musanias v Visicorp
NER i iR SR s Versa
NN s it i it s syt s Voyager
N e S i e Videx
PG L S O T I XPS

The Best of Hardcore Computing Page 23

The Compleat Guide to

Locksmith Parameters

This article describes user-changeable
Locksmith parameters and program logic.

Note: This article is of a highly technical
nature and is intended primarily for the
advanced user of Locksmith.

BACKGROUND

When Locksmith was first introduced in
January 1981, it would copy almost all
disks with no special instructions from the
user. Only a few disks required parameter
changes. Alas, those good old days are
gone forever. Instead of providing the user
with a better back-up policy, software ven-
dors decided to escalate the battle by
developing more complicated (and, in
some cases, bizarre) protection tech-
niques. Because of the many different tech-
niques now in use, it is likely that many
disks will require some input from the user
in the form of parameter changes.

OVERVIEW

Locksmith copies disks by reading a
track, performing analysis on the data and
writing the track to the copy disk. Reading
and writing are fairly straightforward
functions.

The analysis of the track data is by far
the most difficult task and must provide for
flexibility. Many analysis routines (al-
gorithms) are provided within Locksmith.
Each algorithm performs a specific func-
tion relating to the analysis of track data.
By changing parameters, the user may
select, disable or change the execution
order of algorithms. Parameters may also
be used to define values to be used by in-
dividual algorithms.

ALGORITHMS

The algorithms are numbered from 0 to
$23 (all values are in hex). New algorithms
may be added in future versions of Lock-
smith. During track analysis, algorithms are
selected sequentially from a table of
algorithm numbers located from PARM
4C-80. As algorithms are selected from this
table during analysis, they are displayed on
the screen as two-digit hex numbers in in-
verse video.

Algorithm 00 indicates a null aigorithm,
which can replace algorithm numbers in
the table the user wants to disable. An FF
entry in this table indicates the end of the
algorithms to perform.

Currently, the algorithm table contains

Locksmith is a product of Omega Microware, Inc.

four separate algorithm sequences, each
one terminated by an FF entry. The start-
ing point of the algorithm sequence to be
used is defined by PARM 25. This
parameter contains the index into the al-
gorithm table to be used as the first al-
gorithm of a sequence. For example, if
PARM 25 = 00, the algorithm sequence
would start at PARM 4C. If PARM 25 = 10,
the algorithm sequence would start at
PARM 5C. The section of algorithm table
starting at PARM 71 is selected as an al-
gorithm sequence start (instead of PARM
4C) when synchronized tracks are chosen.

Algorithms, in addition to performing
their specialized function, can return a flag
to indicate success or failure. It is possi-
ble to indicate an algorithm is to be per-
formed only if the previous algorithm failed.
This may be done by setting the high-order
bit of the algorithm number within the
algorithm table. For example, an entry of
A1 indicates that algorithm 21 is to be per-
formed only if the previous algorithm failed.

DESCRIPTION OF ALGORITHMS

The following is a list of algorithm num-
bers and the parameters which affect them.

ALG 00 (This algorithm doesn't do much
of anything.)

ALG 01 (Consecutive nibbles to self-
sync) Changes normal nibbles to self-sync
nibbles based on: finding (PARM 10) con-
secutive nibbles in the range (PARM 34)
to (PARM 35), inclusive. For example, if
PARM 10 = 0C, PARM 34 = FE and
PARM 35 = FF, then algorithm 01 would
search for sequences of length 0C nibbles
with values FE through FF and set them
to self-sync.

ALG 02 (Invalids to self-sync) Sets in-
valid nibbles ({those with three or more con-
secutive zero bits) to self-sync.

ALG 03 (Standardize self-sync) Sets all
self-sync to (PARM 33), which must have
high-order bit clear.

ALG 04 (Loner self-sync to normal) Sets
consecutive self-sync strings less than or
equal to (PARM 3C) to normal.

ALG 05 (Glitch remover) Sets consecu-
tive normal nibbles of length less than or
equal to (PARM 12) to self-sync.

ALG 06 (Sets self-sync by marker pat-
tern match) Searches for pattern specified
by (PARM 44-4B) and sets the previous
(PARM 40) nibbles to self-sync. Values of
00 within the pattern are ‘don’t care” and

always match.

ALG 07 (Extend bit shifted self-sync) Ex-
tends self-sync strings backwards, using
the table at (PARM 86-A5). This table con-
tains nibble value sequences frequently
found to be self-sync.

ALG 08 (Reserved for future use.)

ALG 09 (Trackstart after longest gap)
Sets trackstart to first normal after longest
string of self-sync (gap).

ALG 0A (Minimum length self-sync) Ex-
tends self-sync strings backwards to mini-
mum length of (PARM 2C).

ALG 0B (Sets self-sync by self-sync pat-
tern match) Sets self-sync based on
multiple-byte pattern match. Pattern is de-
fined at (PARM 81-85) and is terminated
with a 00 value.

ALG 0C (Shortens all gaps) Shorten all
gaps (consecutive strings of self-sync) by
(PARM 41) nibbles if the string length is
greater than or equal to (PARM 16).

ALG 0D (2 of 3 gap merge) Merges first
and second gaps (by setting to self-sync,
nibbles between them) if three gaps are
found within (PARM 26) nibbles. (The gaps
merged are usually the gaps after a data
field.)

ALG OE (Trackstart after first self-sync)
Sets trackstart to first normal after the first
string of self-sync.

ALG OF (Shortens longest gaps) Short-
ens the longest gap if longer than (PARM
2C) by (PARM XX) nibbles. Repeat this
procedure (PARM YY) times. XX =27 (or
29 if synchronized). YY =28 (or 2A if syn-
chronized).

ALG 10 (Reserved for future use.)

ALG 11 (Sets failure flag) Same as al-
gorithm 00, but sets the failure flag.

ALG 12 (Trackstart by marker pattern
match) Sets trackstart to the first sequence
to match pattern at (PARM 44-4B) (see
ALG 06).

ALG 13 (Center of gaps to normal) Leav-
ing eight self-sync at the start and at the
end of a gap, sets self-sync in the center
of the gap to normal.

ALG 14 (Bit-translate to self-sync) Using
the bit table at (PARM D9-EB), translates
nibbles corresponding to a one-bit to self-
sync. Bits in the table represent values for
nibbles in the following order: 80,81,82, ...
FC,FD,FE,FF

ALG 15 (Reserved for future use.)

ALG 16 (Reserved for future use.)

ALG 17 (Track-end and compare) This

The Best of Hardcore Computing Page 24

algorithm searches for a repeat of the track-
start beginning at (PARM 1D) pages be-
yond the current track-start. A repeat of the
track-start is determined by matching
(PARM 1E) number of nibbles. If the track
size is greater than (PARM 1B) pages, an
error 2 status code will be issued.

Once a track-end is chosen, the first two
track images are compared, nibble for nib-
ble. If an unequal nibble compare occurs,
a look-ahead of up to (PARM 13) nibbles
is performed, looking for self-sync.

If self-sync is found, the compare failure
is ignored. If no self-sync is found during
this look-ahead, a counter is incremented
for the compare-failure, and this count is
checked against (PARM 14), which must
not be exceeded, or an error 4 status code
is issued immediately.

The third track image is then used as a
tie-breaker to determine which of the first
or second track images is correct. The ex-
act position in the third track image is found
by first finding the approximate location in
the third image (by using track length),
backing up (PARM 11) nibbles, and
pattern-matching (PARM 32) number of
nibbles, while searching through the next
(PARM 31) number of nibbles. The first im-
age is corrected by the tie-breaker nibble.
This algorithm returns a success/fail flag.

ALG 18-1F (PARM modifier) These al-
gorithms are used to modify PARMs dy-
namically. The table at (PARM B6-D8)
consists of several sequences of PARM
modifier entries. Each PARM modifier en-
try consists of a pair of bytes. The first byte
defines the PARM number, and the second
byte defines the new PARM value. The end
of a sequence is indicated by a 00 entry
for PARM number, and a new sequence
begins with the next byte. Algorithm 18 in-
vokes the first sequence of parameter
modifier entries, algorithm 19 invokes the
second sequence, etc. Using these al-
gorithms, parameters may be automatically
changed and restored during analysis. The
defaults for these algorithms are currently
set as follows:

ALG 18 sets 13-sector PARMs.

ALG 19 sets 16-sector PARMSs.

ALG 1A sets misc. PARMs.

ALG 1B sets nibble-counting PARMs.

ALG 20 goes to Nibble Buffer address.
This algorithm is used in conjunction with
the Nibble Editor. It prompts the user for
an address to go to, and the Nibble Editor
cursor is immediately placed at that loca-
tion. (See “‘Invoking Algorithms from the
Nibble Editor.”)

ALG 21 (Sets error code 1) Issues an er-
ror 1 status code. It is usually placed in the
algorithm table with the high-order bit set
to cause it to execute only when the previ-
ous algorithm fails.

ALG 22 (Backs up trackstart to front of
gap) Moves the trackstart pointer back-
wards to the beginning of the preceding

gap.

ALG 23 (Sets trackstart to longest nor-
mal) Sets trackstart to the first nibble of the
longest sequence of normal nibbles.

Printer Control PARMs

(Parm 2D) Specifies the printer slot, and
(PARM 2E) is set to 00 if Locksmith is not
to generate >CR< attheend of aline, or
left at 01 if >CR < s are to be generated.

Maximum Error Count PARMs

(Parm 01),(PARM 02), and (PARM 04)
are used to specify the number of errors
allowed for error codes 1, 2 and 4 in auto-
matic error retry mode. If increments of 2
tracks are used, (PARM 09),(PARM 0A)
and (PARM 0C) are used instead.

Nibbie-Counting PARMSs

Some protected disks use a technique
known as nibble counting. This technique
is based on the fact that all Apple disk
drives run at slightly different speeds, and
even the speed of one specific disk drive
varies slightly over time. Disks which are
protected by this method count the nibbles
on a given track and record this unique
number somewhare else on the disk. When
the disk is booted by the user, the nibble
count on the track in question is checked
against the correct value. Simply copying
the track will almost always write a differ-
ent number of nibbles due to disk drive
speed variation.

Locksmith will preserve nibble counts on
any track requested. After the track is writ-
ten to the copy disk, the nibbles are count-
ed and compared to the original count to
be preserved. The difference is shown as
a four-digit hex number preceded by < or
> to indicate to the user which way to ad-
just the count manually.

The count may be adjusted in one of two
ways. Either the disk speed adjustment pot
(inside the disk drive) can be turned in the
direction indicated by the < or > arrows
(see user manual regarding disk speed ad-
justment), or limited adjustment can be
done from software without adjusting the
disk speed.

To adjust the nibble count from software,
press either < or > as indicated, and wait
until the speaker begins beeping. The
speaker will beep rapidly once for each nib-
ble that the track is being shortened or
lengthened. Then press the return key (or
any key other than < and >) and allow the
nibble count routine to test the track again.
When the nibble count is within the toler-
ance value specified by PARM 37 (normally
00), the track will be considered copied cor-
rectly. This technique may seem cumber-
somse, but it is the only way in which a track
may be copied while preserving the nibble
count.

There are three parameters which are
used when nibble-count preservation is

desired. Setting (PARM 36) to 01 turns on
nibble-counting. The nibble-count toler-
ance value, (PARM 37), specifies how
close to the original disk the copy must be.
When nibble-counting, the track-end
pointer is moved up by (PARM E9) pages
before writing.

PARMs Used for Synchronizing

(Parm 22) specifies the track™2 to sync
with. This is normally 00 but may be set to
any track. (Parm 1F} is the length of the nib-
ble sequence to sync with, and (PARM
A6-B5) contain the pattern to match when
attempting to sync on the sync-track.
Values of 00 within the pattern are “‘don’t
care’ and always match. (PARM 23) and
(PARM 24) are values which can be used
to adjust the accuracy of the sync-track rou-
tine. They are normally equal, and can be
adjusted by increasing the value of one
with respect to the other.

PARMs Used to Control Writing

(Parm 20) contains the lead-in self-sync
nibble value. (Parm 2F-30) (default is
$1A00) number of these lead-in self sync
nibbles are written before track data is writ-
ten, with the exception of synchronized
track writing, which is preceded by (PARM
23) lead-in self-sync nibbles. The number
of framing bits (1 or 2) is contained in
(PARM 21). This places the proper num-
ber of trailing zero-bits after self sync.
(Parm 2B) contains the number of the al-
gorithm to be used to shorten the track af-
ter an over-write is detected by verify
readback failure.

Other PARMs

(Parmm 38) is the number of nibbles to test
during verify readback. (Parm 39), if set
non-zero, shows the hi-res screen during
analysis, to provide a graphic representa-
tion of analysis. (Parm 3A) is used during
disk certify. It specifies the maximum size
of the track-end glitch. (Parm 3B), when set
to 01, causes the Nibble Editor to be en-
tered for every track befare analysis.

Debug Parameter

(PARM 00) is a special parameter intend-
ed for use during Locksmith debugging.
When this PARM is set to 11, certain
debugging options are enabled.

They are:

1. Inspector entry is allowed even without
a resident RWTS.

2. The Nibble Editor is entered automat-
ically without prompting the user for a track
to read. This allows the previous track to
be examined.

Invoking algorithms from the Nibble
Editor.

With debug PARM set (PARM 00 =11),
the Nibble Editor is sensitive to two

The Best of Hardcore Computing Page 25

additional commands. These are ctrl S and
ctrl A. Ctrl S invokes Locksmith track-
analysis for the track currently in the Nib-
ble Buffer. Ctrl A first allows the user to
change parameters by entering the
parameter modifier, and after the user has
indicated the end of parameter changes
with a >CR<, it prompts the user for
algorithm number.

The user-entered algorithm number is
executed immediately, and control is
returned to the Nibble Editor. In this way,
the user can dynamically test the effects
of specific Locksmith algorithm sequences
when attempting to copy unknown disks.
Algorithm 00 can be specified if no
processing is to be done.

Algorithm 20 is very useful within the
Nibble Editor to rapidly go to a specific ad-
dress within the Nibble Buffer,

A2-FS1 (Flight Simulator) (SL)

00-21 BY 1.5
07-08 BY 1
95
Alternate method
00
1521 BY 1.5........ 44:DB 45:AB 46:BF 40:20
4E:00 54:12
07-08 BY 1
9.5
A2-PB1 (Night Mission) (SL)
00
1 44:DB 45:AB 46:BF 40:20 4E:00
54:12

Write protect before running.

AIRSIM-1 (MS)

s00-02 BY 1.......... AB:BS 7B:00 79:12 47:FF
s 09-22 BY 1

s 0308 BY 1.......... 79:0E (0B ERROR 1S 0.K.)
Write protect before running.

AKALABETH (CP)
$ 00-18 BY 1.......... 44:DD

ALIEN RAIN (BS)

s 00-0E BY 1
ALIEN TYPHOON (BS)
S 00-0E BY 1
Alternate method
00
0105 BY 1............ 46:AD
06-0E BY 1............ 44:DE
APPLE LOGO (AC)
00-22
1 e 4C:1B 57:00 E9:02 34:FF

50:00 51:00 52:00 53:00
Uses nibble count.

APPLEOQIDS (CP)
00-22

03.5
21.5

APPLE PANIC (BS)
00-0D

Alternate method
00

APPLE PERSONAL FINANCE MANAGER (AC)

0022 oenanes 10:04 16:40 46:96 51:00
53:0B 54:12 81:.CF B2:F3
83:FC

APPLE PRINT USING (UNK)

5 00-23 BY 1

APPLE lll BUSINESS GRAPHICS (AC)

s00-22 BY 1.......... 18:50 19:00 40:04 46:96
75:00 76:00 77:00 78:00
79:12

APPLE WORLD (USA)
00-23

APPLE-WRITER Il (AC)
L7) (R 8 46:96 54:12

APPLE-WRITER Nl (AC)
s 00-22 BY 1

AUTOBAHN (SRS)
00
S 0406 BY 1......... 74:00

5 09.5-0C.5 BY 1

Alternate method

00

04-06........ccccuenne. 74:00

09.5-0C.5

BAG OF TRICKS (QS)

00

D14 cesmavninmd 40:10 44:D6 53:00

BANK STREET WRITER (BS) (use MODE 2)

119 csanansan 4D:0B 4E:02 4F:01 50:06
1:05 52:00 53:07 58:19
9:06 5A:1A 5B:FF 40:07
44:A5 45:96 46:BF BD:04
BE:44 BF:45 C0:D5 C1:46
C2:06 C3:D0 C4:44 C5:A5
C6:45 C7:96 C8:46 C9:BF
CA:00

.1 R————— 44:EE 45.EF 46:F5 40:80
58:FF 4D:00

00

BASIC MAILER (ART)

D0-22...ciiiicmiveinns 4F.0B

BATTLE OF SHILOH (SS)

00

[1) . S 4F:0B

BEER RUN (SRS)

311, | 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20

501.5-0D.5 BY 1

Alternate method

00

01.5-0D.5 BY 1......72:00 73:00 77:00 78:00 79:12
7C:00 40:20 19:00 44:DD 45:AD
46:DA

BORG (SRS)

10,8 e v, 18:20 19:00 40:20 44:DD

45:AD 46:DA 72:00 73:00
77:00 78:00 79:12 7C:00
501.5-0B.5 BY 1
s 0D-20 BY 1

Alternate method

O0:caaiamens 18:20 19:00 40:20 4D:00
4E:00 4E:00 52:00 53:00
54:12 57:00 72:00 73:00
77:00 78:00 79:12 7C:00
44:0D 45:AD 46:DA

5 01.5-0C.5 BY 1
s 0D-20 BY 1

BPI BUSINESS ACCOUNTING (AC)

00-22......ccovvees 81:AD 82:FB 83:E6 B4:FF
40:08 16:08 41:FF 19:00
58:0B 59:FF

Alternate method
00-22.........ce.... 19:00 21:02 58:19 59:06
5A:1A 5B:FF BD:44 BE:E6
BF:45 CO:FF G1:40 C2:01
C4:44 C5:D5 C6:45 C7:AA
C8:40 C9:04 CA:00

BRAIN SURGEON (UNK)

00-22

Beinasnisis 4C:1B 57:00 E9:02 D2:00
Alternate method

00-22

Odoossimimimnarsnsans 4C:1B 57:00 E9:02 D2:00
BUDGE'S SPACE ALBUM (CP)

00-08

BUG ATTACK (CC)

00-13 (OE-13 Errors may occur)

1 s, b Ml Dl 4C:1B 57:00 E9.02
Uses nibble count.

CANNONBALL BLITZ (SOL)
(1420 0 O e e 46:96 54:12 53:00
D30Fooooeevnnnne 4(:1B 57:00 E9:02
Uses nibble count.

CARTELS AND CUTTHROATS (SS)

DIRD 4F:.0B
Alternate method
13 O A 46:96

CASTLE WOLFENSTEIN (MU)
s00-22 BY 1.......... 46:B5 79:12

Alternate method

5 00-22 BY 1
COMPUTER AIR COMBAT (SS)
DOB2....ccovnsommsinis 25:19 65:00 6B:00
COMPUTER AMBUSH (SS)
00
0122 s 4F:0B
Alternate method
13 e e 25:19 65:00 6B:00
COMPUTER CONFLICT (SS)
00
§§ 4F:0B
COMPUTER FOOSBALL (SRS)
Omsvnsniiis 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20
s 1595
1A

(For errors on trk 9.5 use manual retry till no errar)

COMPUTER NAPOLEONICS (SS)
00

1] o 4F:08
COMPUTER QUARTERBACK (SRS)
111 R 25:19 65:00 60:00

CONGLOMERATES COLLIDE (RO)
00-22

The Best of Hardcore Computing Page 26

CONGO (SN)
AR o svmamenmn 46:96 4D:00 4E:Q0 21:02
26:06 51:00
CONTEXT CONNECTION (CON)
00-22...viviriiinnn 19:01 21:02 58:19 59:06

5A:1A 5B:FF BD:44 BE:EB
BF:45 CO:FD C1:40 C2:01
C4:44 C5:D5 C6:45 C7:AA
£8:40 C9:04 CA:00

COPTS AND ROBBERS (SRS)

O nvismiiig 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20

s 01.5-0F.5 BY 1.....72:00 73:00 77.00 78:00
79:12 7C:00 40:20 19:00
44:DD 45:AD 46:DA

CRANSTON MANOR (SOL)
00-22
b | e 4C:1B 57:00 E9:02
Uses nibble count.

Alternate method
00-22
D L 53:00 44:D5 45:FE 4C:1B
57:00
Uses nibble count.

CRISIS MOUNTAIN (SY)

O0-22:ccovssiionnsts 1B:19 10:18 1E:30 40:02
44:00 45:00 46:EB 47:AF
4E:00 51:00 52:00
CROSSFIRE (SOL)
00-22
D jessma ot 4C:18B 57:00 E9:02

Uses nibble count.

CROSSWORD MAGIC (L&S)
s 00-22 BY 1.......... 46:96 75:00 76:00 77:00
78:00 79:12 4B:AA

CRUNCH, CRUMBLE & CHOMP (EAS)
s 00-22 BY 1

CYBERSTRIKE (SRS)
00

s 03-0B BY 1

s 11-1C BY 1

Alternate method

00

s04-0BBY 1.......... 46:F5 79:12
s11-1CBY 1.......... 46:B5

Altemate method

00
s 04-0B BY 1.......... 46:F5 79:12
b o PP 46:85
CYBORG (SN)
00-22........0c0000ene 47:FF 48:F8 4D:00 4E:00
51:00 40:04
CYTRON MASTERS (UNK)
0022 ;cvvinmvnsnmsonan 25:19 65:00 6B:00
DARK FOREST (SRS)
s 00-22 BY 1
Alternate method
11 AR e 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57.00 40:20

50222 BY 1.......... 72:00 73:00 77:00 78:00
79:12 7C:00 40:20 19:00
44:D5 45:AA 46:AF

DATADEX (IU)

$00-02 BY 1......... 79:12 46:96
5035

s 05-22 BY 1

DATA FACTORY 5.0 (ML)
s00-23 BY 1.......... 46:96 79:12 71:19 75:00
76:00 77:00 78:00

DATA PLAN (UNK)

s 00-22 BY 1
DATA REPORTER (SY)
G T 4D:00 46:96 54:12

DB MASTER & UTILITIES (SW)
00-05
06.5-22.5 BY 1

Alternate method
00-05
06.5-22.5 BY 1
Write protect before running.

DB MASTER & UTILITIES v3.2
00

s 01-05 BY 1

06.5-21.5 BY 1

TRN R 4D:00 46:96 54:12
DEAD LINE (IC})

1115 46:96 40:14

DESK TOP PLAN Il (VCP)
00-22......ccc0mmenee 19:01 21:02 58:19 59:06

5A:1A 5B:FF BD:44 BE:EB
BF:45 CO:FD C1:40 C2:01
C4:44 C5:D5 C6:45 C7:AA
C8:40 C9:04 CA:0D

DISK LIBRARY (INS)

00-22.....covvviiiaeenn 40:09 53.00 16:77 46:96
47:AA 48:AA 4B:AA 54:12
21:02

DISK ORGANIZER Il (SEN)

00

5 02-04 BY 1

s DA-0B BY 1

1y Ty 4C:1B 57:00 E9:04

Uses nibble count.
DISK RECOVERY (SEN)

00
s 02-16 BY 1
Alternate method
00
s 02-04 BY 1
s 0A-OB BY 1
DARAGON GAMES (EAIl)
00-22
... oo i 4C:1B 57:00 E9:02 D2Z:00
ELECTRIC DUET (IN)
00-22....ccoovviirvennns 40:08 16:08 41:FF 19:00
81:DE B2:AA 58:0B 59:FF
EPOCH (SRS)
00 visasmiees 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20

s 01.5-0F.5 BY 1.....72:00 73:00 77:00 78:00
79:12 7C:00 40:20 19:00
44:D5 45:AA 46:DA

ESCAPE FROM ARCTURUS (SY)
QD22 i 4D:00

Alternate method
s 00-22 BY 1.......... 4D:00

ESCAPE FROM RUNGISTAN (SRS)
5 00-21 BY 1.......... 36:01
Uses nibble count.

Alternate method
00-22

EXECUTIVE SECRETARY (PBS)
01.5-21.5 BY 1
00-22 BY 1

Alternate method

EXPEDITER (SOL)

00-22

03 & 1F....cocvnennn 4C:1B 57:00 E9:02
Uses nibble count.

Alternate method

00-22

O0F & A i 4C:1B 57:00 E9:02 D2:00
Alternate method

00-22

03 & 1F..ivinnnee. 4C:1B D2:00

APPLY PATCH NC30 (version 4.0 only)

Alternate method

00-22

03 & 1Fiiiiinins 4C:1B 57:00 E9:02
(version 4.1 only)

FACEMAKER (SPN)
0-22.vovererrreeene 21:02 40:04 52:00 53:00
58:0B 59:FF 81:AA 82:9B
83:FC

FALCONS (PDS)
00

01.5-04.5 BY 1.5....18:20 34:AA
44:DF 45:AD 46:FE
05.5

07-0A BY 1
0B.5-0E.5 BY 1.5
10-12 BY 1
13.5-14.5 BY 1
16-19BY 1.5
1A-1B.5 BY 1.5

Alternate method

00

01.5-04.5 BY 1.5....18:40 19:00 34:AA 40:40
44:DF 45:AD 46:00 4E:00
4D:00 52:00 53:00

05.5

07-0A BY 1

0B.5-0E.5 BY 1.5

10-12 BY 1

13.5-14.5 BY 1

16-19 BY 1.5

1A-1B.5 BY 1.5

Alternate method

s 00
s 01.5-19.5 BY 1

FINANCIAL CONTROLLER (UNK)
5 00-22 BY 1

FIREBIRD (GS)
T 18:20 19:00

s 01.5-0B.5 BY 1...72:00

The Best of Hardcore Computing Page 27

GALACTIC SAGA | (EMPIRE) (BS)
s 00-23 BY 1

GALACTIC SAGA Il (TRADER) (BS)
00-23

GALACTIC SAGA IV (BS)

) e T 18:50 19:00 40:20 46:96
40:00 4E:00 52:00 5300
54:12 57:00

01-22................... 44:D5 45:AA 46:B5

GALAXY WARS (BS)

5 00-12 BY 2

GAMMA GOBLINS (SRS)

00...18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20
72:00 73:00 7700
78:00 79:12 7C:00 40:20
19:00 44:DD 45:AD 46:DA

GENETIC DRIFT (BS)

s 01.5-0D.5 BY 1....

00........co0eernn.... 18:50 19:00 40:20 46:96
4D:00 4E:00 52:00 53.00
54:12 57.00

0103 BY i 44.8B 45:B5 46:BB

04.5-06 BY 1.5

07.5-0B.5 BY 1

08 .. covescmmsmmsmimin 44:04 45:D5 46:BB

OE.5-12.5 BY 1......44:AD 45:B5 46:DE

GOBBLER (SOL)
= (2R 4E:00
03......ccocovevevenn. 4GB D2:00 45:08 4E:01
34:FF 54:12 52:00

GOLD RUSH (SN)
0022 s nmamiciii: 46:96 4D:00 4E:00 21:02
26:06 51:00

GOLDEN MOUNTAIN (BS)
00

s 01-00 BY 2

02-0E BY 2

GORGON (SRS)

s 01.50E.5 BY 1.....54:09

Alternate method

e s 18:20 19:00 46:96 40:00
4E:00 52:00 53:00 54:12
57:00 40:20

72:00 73:00

77:00 78:00 79:12 7C:00
40:20 19:00 44:DD 45:AD

5 01.5-0E.5 BY 1.....

46:DA
Alternate method
00
1:6-E8 BY Tewiinvsiis 72:00 73:00

77:00 78:00 79:12 7C.00
40:20 19:00 44:DD

HADRON (SRS)

5100 s smmemessmanie 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20

5 01.5-00.5 BY 1

Alternate method

00 e 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20

s 01.5-0E.5 BY 1.....72:00 73:00
77:00 78:00 79:12 7C:00
40:20 19:00 44:DD 45:AD
46:DA

HAYDEN ALIBI (HN)

00-02

03-22................... 51:00 52:00 53:00 54:12
19:00 18:50 57:00 44:04
46:85

I B 4C:1B £9:02

Uses nibble count.

HAYDEN APPLESOFT COMPILER (HN)
5 00-22 BY 1.......... 46:96 71:19 79:12
Errors on 10-1E O.K.

Very sensitive to drive speed.

HI-RES CRIBBAGE (SOL)

s 00-05 BY 1
06-22
HI-RES FOOTBALL (SOL)
5 00-05 BY 1
06-22
HI-RES GOLF (AG)
BEED: oorevesssvent 4E:00 46:B5 54:12
HI-RES SECRETS (AG)
QOB o5 46:96 54:12 34:FB
HIRES SOCCER (SOL)
s 00-22 BY 1
HOME ACCOUNTANT (CTS)
0009 46:96 54:12
HYPER HEAD ON (BS)
5 00-12 BY 2
IMAGE PRINTER (SEN)
5 00-07 BY 1
s 09-22 BY 1
11— 4C:1B 57:00 E9:02 D2:00

44:FE 45:AB 54:12 50:00
51:00 52:00 53:00

INVOICE FACTORY (ML)

D022,comvaii 46:96 54:12
JAWBREAKER (SOL)

00-22

D3 ciisssumsaassagass 4C:1B 57:00 E9:01

Uses nibble count.

Alternate method

00-22
030, 34:FF 44:DF 45:EF 46:F7
50:00 51:00 52:00 53:00
54:12

LETTER PERFECT (LJK)

0022 44:00 45:D5 46:AA
MAD VENTURE (ML)

s 00-23 BY 1
MAGIC WINDOW (ART)

0022 v 4F:0B
MAGIC SPELLER (ART)

1 S 4F:08
MAGIC WORD (ART)

00-22... s
MASTER DIAGNOSTICS PLUS (UNK)
00-22

B oo 4C:1B 57:00 E9;02 D2:00
MASTERTYPE (LNS)

00-02

031A oo, 44:D4 54:12

1C-22

Alternate method
00-02
031A.................44:D4
1C-22

MICRO BASEBALL (SW)
00-04
5 05-22 BY 1

MICRO COURIER (MC)
00-22
1F.iiiiiiienn....81:97 B2:EB 40:08 16:08
41:FF 19:00 58:0B 59:FF

Alternate Method
D0-22....civiviiinimess 46:96 54:12
o L 81:97 82:EB 40:08 16:08
41:FF 19:00 58:0B 59:FF

MICRO TELEGRAM (MC)
00-22
1F.ieeeeceeeee......81:97 B2:EB 40:08 16:08
41:FF 19:00 58:0B 59:FF

MICROWAVE (CC)

00-22

| e 4C:1B 57:00 £9:02
Uses nibble count.

MILLIKEN MATH (ML)
00-22...................4C:18 46:B5 54:12 50:00
51:00 52:00 53.00

MISSLE DEFENCE (SOL)

s 00-22 BY 1
MISSION ASTEROID (SOL)
s 00-22 BY 1
MOUSKATTACK (SOL)
D22 ... ccvsmonpennes 46:96 54:12 53.00
23 4(:1B 57:00 E9:02

Uses nibble count.

MONTY PLAYS MONOPOLY (IC)
00-05...0cceuennnenee 1E:0B

MULTI DISK CATALOG lll (SEN)
s 00-02 BY 1
s 04-09 BY 1

Alternate method
s 00-22 BY 1

MYSTERY HOUSE (SOL)
s 00-22 BY 1

Alternate method
00-10
12-22

NIGHTMARE GALLERY (SY)
O0-22 i 46:96 54:12 51:00 4D:00
4E:00

OLYMPIC DECATHLON (MIS)
00-22

Alternate method
50022 BY 1.......... 46:85 A8:00 71:18
79:12

00-TOPOS (SN)
D0-22...cosnvinsisorninn 32:88 01:06

Alternate method

022 o 4D:00 4E:00 21:02 2C:06
48:EE 49:FF

The Best of Hardcore Computing Page 28

OPERATION APOCALYPSE (5S)

00-22...................25:19 65:00 6B:00
ORBITRON (SRS)
00.........ooveee... 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20
5 01.5-0E.5 BY 1.....72:00 73:00 77:00
78:00 79:12 7C:00 40:20
19:00 44:DD 45:AD 46:DA
QUTPOST (SRS)
Q) et e im St) 18:20 19:00 46:96 4D.00
4E:00 52:00 53:00 54:12
57:00 40:20

5 01.5-00.5 BY 1....72:00 73:00
77:00 78:00 79:12 7C:00
40:20 19:00 44:0D 45:AD

46.0A
Alternate method
F)Lf———— 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20

5 01.5-09.5 BY 1.....72:00 73.00
77:00 78:00 79:12 7C:00
40:20 1900 44:DD 45:AD

46:DA
PADDLE GRAPHICS (SOL)
00-22
vt e e 36:01

Uses nibble count.
PALACE IN THUNDERLAND (ML)

0022, 25:19

PEGASUS Il {SOL)

00-22

s e s 4C11B 57:00 E9:02

Uses nibble count.

Alternate method

0022, vncisanisninne 4E:00

L e e 4C:1B 57:00 E9:02
Uses nibble count.

PFS (SPC)

01-13

Olniessamses 40:08 41:FF 16:08 19:00

58;0B 59:FF 54:12 12:02
44:93 45:F3 46:FC 47:FF
81:93 82:F3 83:FC 84:FF
{00 error may occur)
Write-protect disk before running.

Alternate method

0022 ccciniiminns 10:04 16:40 46:96 51:00
53:0B 54:12 81:CF 82:F3
83:FC

PFS REPORTS (SPC)

00-13

00 40:08 41:FF 16:08 19:00
58:0B 59:FF 54:12 12:02
44:93 45:F3 46:FC 47:FF
81:93 82:F3 83.FC B4.FF

Alternate method
00-22
T 40:08 41:FF 16:08 19:00

58:0B 59:FF 54:12 12:02

44:93 45:F3 46:FC 47:FF

81:93 82:F3 83:FC B4:FF
(after copying write protect before running)

PHANTOMS FIVE (SRS)
00

PHOTAR (STP)
5 00-22 BY 1

POOL 1.5 (IDSI)
s 00-15 BY 1
s 1E-21 BY 1

Alternate method
s 00-15 BY 1.......... 46:85 79:12

s 1E-21 BY 1
Alternate method
00-15...................21:02
1E-21
PRESIDENT ELECT (SS)
00-22................... 25:19 65:00 6B:00
Alternate method
00-22................... 25:19 6B:00
PUCKMAN (UNK)
00.........ccove. 54012
01-0D...................54:08
PULSAR Il (SRS)
s 00

5 1C€.5-1D.5 BY 1

502-0C BY 1.......... 44:0D
s13-19BY 1

s 1A.5-1B.5 BY 1

QUICK LOADER (SEN)
00

5 02-11 BY 1

RASTER BLASTER (BC)
00..........cooeeennn . A4:AD 45:DE 53:00
s 05-11 BY 4

5 06-12 BY 4

5 07.5-0F.5 BY 4
s 01.5-03.5 BY 2

Alternate method

00... ...46:96 54:12

30511 BY4 44:AD 45:DE 46:00
72:00 73:00 75:00 78:00
79:12

5 06-12 BY 4

s 07.5-0F.5 BY 4

s 01.5-03.5 BY 2

RETROBALL (SOL)
00

04-06

08-0C

0E-10

1214

17-1D
20:22........0.......... AD:00 4E:00

RINGS OF SATURN (SL)
s 00-02 BY 1
03-22
s05
s 09

SABOTAGE (SOL)
00-22
1 T 4C:1B 57:00 E9:02
Uses nibble count.

SARGON Il (HN)

00-1A ... 19:00 54:12 47:FF 4C:18
48:FF 50:00 51:00 52:00
53:00

Alternate method
115 19:00 54:12

SCREENWRITER Il (SOL)

00222 cinsmnacanin 4D:00
SHATTERED ALLIANCE (SS)
00....ccoveiiinne....25:19 65:00
1 o 4F.0B
Alternate method
00-22.,,..ccovvinmoquonss 25:19
Alternate method
00, s 4C:18 47:FF 53:0B 54:12
01-22...cceeeeeenne 44:04 46:B5
SHOOT EM UP IN SPACE (UNK)
00-22......ccoeeennnnn 25:19 65:00 6B:00

SINGA SHAPE MANAGER (UNK)
5 00-22 BY 1

SNAKEBYTE (SFIS)
00...18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20
s 01.5-0E.5 BY 1.....72:00 73:00 77.00
78:00 79:12 7C:00 40:20
19:00 44:DD 45:AD 46:DA

SNEAKERS (SRS)
00......ccooverennnn.... 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54;12
57:00 40:20
s 01.5-0D.5 BY 1....72:00 73:00 77:00
78:00 79:12 7C:00 40:20
19:00 44:DD 45:AD 46:DA

SNOGGLE (PUCKMAN) (BS)
00-09

Alternative method
00-0F
5 10.5-11.5 BY 1

Alternate methed
s 00-09 BY 1

SOFTPORN ADVENTURE (SOL)
00-22
OB nr e 4C:1B 57;00 E9:02
Uses nibble count.

SOUTHERN COMMAND (SS)
0022 v cnmivsvans 25:19 6B:00 34:D5 35:AB

SPACE EGGS (SRS}
00

02-06
11-13
G . e e 44:0D
SPACE QUARKS (BS)
OO0 18:50 19:00 40:20 46:96
40:00 4E:00 52:00 53:00
54:12 57:00
01020 amnnnng 44:AB 45:D4 46:AB
03.5-05.5 BY 1
07
09 44.FE 45:DD 46:AF

0A.5-0B.5 BY 1......44:AA 45:DE 46:8B
0D-15 BY 1

SPACE WARRIOR (BS)

Qsammmsimnii 18:50 19:00 40:20 46:96
4E:00 52:00 53:00 54:12
57:00

025-035.............. 44:DF 45:AD 46:DE

05-08 BY 3

06.5

DA-10 BY 3

The Best of Hardcore Computing Page 29

SPY’S DEMISE (PEN)
0-22 BY 1
(Errors on track 11-22 0K)

STAR BLASTER (PDS)

00

s 07-20.5 BY 1.5.....72:00 73:00 77:00
78:00 79:12 7C:00 40:20
19:00 44:DF 45:AD 46:DE

STAR CRUISER (SRS)
$ 00-03 BY 3
s 05-0B BY 1
s 11-12 BY 1
1 44:AA 45:DD 46:8B

STAR MINES (STP)

STAR RAIDERS (USA)
00-05
(Error may occur on 05)

STAR THIEF (CC)
00-0E
22 iiiieeieennn, . 4C1B 57:00 E9:02
Uses nibble count.

Alternate method

00-13
Errors may occur on 0E-13.
D s 4C:1B 57:00 E9:02

Uses nibble count.

SUPER APPLE BASIC (HN)
00-22

03

Uses extended retry.

SUPERSCRIBE Il (SOL)

00-22

O3t 4C:1B 57:00 E9:02
Uses nibble count.

Alternate method

00-22

03...overeerreernn.... 45:00 50:00
TAX PREPARER (HS)

L R 46:96 54:12 4C:19
THIEF (DM)
00-22......o..oovee, 83:FF 4F:0B 53:00
§ 04-05 BY 1..........38:02 1E:02 19:00 12:01
7C:00

THRESHOLD (SOL)

00-22

01-23 BY

- S 4C:1B 57:00 E9:02

Uses nibble count.

Alternate method

00-22

O 4C:1B 57:00 E9:02
Uses nibble count.

TIGERS IN THE SNOW (SS)
QOEZAZIY, e 25:19 65:00 68:00

Alternate method
00-22....cccociveennn 25:19 6B:00

TIME ZONE (SOL)
s 00-04 BY 1
05-22
(Disk sides 1B to BL, tracks 00-22.)

Alternate method
00-22

Use extended retry. (Sides 1B to 6L, tracks 00-22.)

TINY TROLL (UNK)

00-22
03.5-05 BY 1.5
TORPEDO FIRE (SS)
00
01-22.....crerverenn, AF:0B
TRANSEND 2 (SSM)
S 00-22
TRANSYLVANIA (PEN)
0-22 BY 2
181 BY D ncvenas 44:D4 46:96
TWERPS (SRS)
00l 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57:00 40:20

s 01.5-0E.5 BY 1.....72:00 73:00
77:00 78:00 79:12 7C:00
40:20 19:00 44:DD 45:AD
46:0A
1C......oivien . 4C:1B 57:00 E9:02 D2:00

Alternate method
....18:20 19:00 46:96 40:00
4E:00 52:00 53:00 54:12
57:00 40:20
5 01.5-0E.5 BY 1.....72:00 73:00
77:00 78:00 79:12 7C:00
44:0D 45:AD 46:DA

s1C
Alternate method
00w 18:20 19:00 46:96 4D:00
4E:00 52:00 53:00 54:12
57.00 40:20

5 01.5-0E.5 BY 1.....72:00 73:00
77:00 78:00 79:12 7C:00
40:20 19:00 44:0D 45:AD
46:DA

TR 4C:1B 57:00 E9:02

Uses nibble count.

U-BOAT COMMAND (SY)

00-22................... 4E:00 51:00 52:00 40:02
1E:30 1B:19 1D:18 44:00
45:00 46:EB 47:AF

Alternate method
0022 . camnsninans 4E:00 51:00 52:00 40:02
1E;30 1B:19 1D:18 44:00
45:00 46:EB 47:AF 48:FB

49:EB
ULTIMA (CP)
00-22........cnn. 1E:0B
ULYSSES (SOL)
1 — 4C:1B 57:00 £9:02

Uses nibble count, Disk side B tracks

VISICALC (VCP)
00-22
NB ignore 01 error,

Alternate method
00-15
NB ignore 01 error.

YVISICALC Il (VCP)
5 00-22 BY 1

VISIDEX (VC)
00-22..................40:04 16:08 41:FF 19:00
58.0B 59:FF 81:AA B2:EB

83:FD 21:02

Alternate method
L e 40:04 16:08 41:FF 19:00
58:0B 59:FF 81:AA 82:EB
83:FD 21:02 46:96 5412

VISIFILE (VCP)

11— 19:01 21:02 58:19 59:06
5A:1A 5B:FF BD:44 BE:EB
BF:45 CO:EC C1:40 C2:01
C4:44 C5:D5 C6:45 CT:AA
C8:40 C9:04 CA:00

Alternate method
00-22................... 18:00 21:02 58:19 59:06
5A:1A 5B;FF BD:44 BE:EB
BF:45 CO:EC C1:40 C2:01
C4:44 C5:D5 C6:45 C7:AA

C8:40 C9:04 CA:00

VISISCHEDULE (VCP)

0822 cmemmnining 40:04 16:08 41:FF 19:00
58:0B 59:FF 81:AA 82:EB
83:EC 21:02 46:96 54,12

Alternate method

1§ A ——— 40:04 16:08 41:FF 19:00
58:0B 59:FF B1:AA B2:EB
83:EC

VISITERM (VCP)

00-22

OB i 40:08 16:08 41:FF 19:00
58:0B 59:FF 81:AA B2:EB
83:FC

VISITREND/VISIPLOT (VCP)
00-22
s 40:08 16:08 41:FF 19:00

81:DE 82:AA 58:08 59:FF
WARP FACTOR (SS)

WIZARD AND THE PRINCESS (SOL)
5 00-22 BY 1

WIZARDRY -1 (Proving Ground) (SIR)
00-09

0F-22

sOAQEBY 1........ 36:01

Uses nibble count.

Write protect befare running.

Alternate method

08 oo vmsensrimima 36:01 21.02 46:96
Uses nibble count.

Write protect before running.

s01-22 BY 1.......... 36:00

Locksmith Parameters
continued on page 46

The Best of Hardcore Computing

Page 30

A step-by-step guide to making back ups using

Nibbles Away II Parameters

There are three basic steps to back up
a diskette:

1. Locate the tracks which contain data.

2. Find the address marker for the sec-
tors there.

3. Determine if any additional protection
is used (this is the hard one!).

TRACK/BIT EDITOR

For most of the procedures below, a
basic working knowledge of the track/bit
editor (TBE) is required. For those who are
not familiar with the TBE, an overall
description and some examples are given
below.

The examples are easier fo understand
if they are performed while reading the in-
structions, so boot Nibbles Away][and try
them out to get a better understanding of
what is going on.

Enter the TBE by selecting option T from
the main menu. A large section of numbers
will appear on the screen with two dashed
lines at the top. The information between
these lines is the status information. It
shows such things as cursor position and
track number. It is also the location where
various prompts appear for certain func-
tions. The numbers at the bottom are sepa-
rated into two sections. On the left are the
starting memory addresses for each line to
the right.

Move the cursor around using |, J, K or
M and watch the ADDR indicator in the sta-
tus line. It will show exactly what memory
address the value under the cursor
represents.

The arrow keys change the area of
memory that can be seen. They shift the
view 256 bytes forward or backward at a
time. The only really important thing to
know for this discussion is how to use the
arrow keys to move the viewing ‘window"
around in memory.

The semicolon (unshifted plus) and the
dash (-) keys increment and decrement the
track number in the status line.

Pressing R will cause drive one to read
the data from the track indicated in the sta-
tus line into memory. The bytes on the
screen will change since different data has
been read. Pressing the R key multiple
times will result in different data being dis-
played. This is because Nibbles Away][
starts reading at whatever point happens
to be under the read/write head when the
drive is turned on. The data is not actually
different; it is just not loaded at the same
memory location as it was previously.

Nibbles Away |l is a product of Computer Applications, Inc.

Step 1: Locate the Tracks with Data

To begin, the track pointer should be set
to track $00. Pressing R will read the track
and show it on the screen. The arrow keys
should be used to move the viewing “‘win-
dow” to start at $2000.

Now move forward and try to determine
if this track contains valid data. Actually,
track $00 must contain some data in order
for the disk to boot, but we will be using
this procedure on other tracks which do not
necessarily contain data.

GAPS

The main thing which will identify a track
as containing data is the presence of gaps.
Gaps are sections of the same byle repeat-
ed several times. Normally they are made
up of $FFs and are 6-20 bytes in length.
To see what these look like, insert the Sys-
tem Master disk and read track $00 as
described above.

Moving through the buffer with the arrow
keys will reveal a large variety of values.
Spaced among these should be sections
of 6-20 FFs in a row, depending on the ex-
act disk. Normally DOS 3.2 disks have larg-
er gaps than DOS 3.3 disks. There should
be many gaps, spaced so that one is seen
about every other time the arrow keys are
used to move forward or backward.

Note: A second, smaller (2-6 $FFs) gap
may be seen following a large gap, with a
small section of data in between. This is
called the secondary gap. When referring
to a gap here, the allusion will be to the
primary gap, not the secondary one.

FULL/HALF TRACKS

Now try looking at other tracks on the
disk. First look only at the full tracks (no
“.5" on the end). All of them will be simi-
lar to track $00 in the appearance of the
gaps. Try this several times to become
comfertable with locating gaps on a given
track.

Now read a half track (**.5" on the end).
Scan memory to locate some of the gaps.
Since System Master disks do not use half
tracks, the data which is seen is really
“cross-talk.” In other words, data was writ-
ten on the full track, but the magnetic pat-
tern spread out a bit, so some data is seen
here. The telltale sign of this phenomenon
is that the gaps will not all be the same.
That is, they may contain one or more
values which are inconsistent. This reveals
that there is some data on the track but that
it is not valid data. Take a look at other half

tracks until half tracks and full tracks can
be discerned by examining the gaps.

BLANK TRACKS

The next item to be able to identify is a
blank track. To do this, insert a blank
(noninitialized) disk into drive 1. Read any
track on this disk and scan through the
memory addresses. There will be no gaps,
and many of the bytes will end in 0 (ie. $A0,
$B0, $E0), which are not legal disk bytes.
This means that the controller can find no
valid data on the track. Some disks have
portions of tracks which are not used, so
always be sure to examine at least 24
screens full of information to make sure
that there is no data at any point on the
track.

The next tool for finding data is a result
of the fact that valid data must be at least
one track apart. In other words, if data is
located on track 3.5, track 4 cannot have
data and the next place where data can be
is track 4.5. This is very helpful for finding
tracks with data.

Note: If data is located on a given track,
it is a good idea to look at the tracks one
half track to either side to make sure that
they look less valid than the track selected
as the real one.

Now that valid data can be recognized,
begin at track $00 and step towards track
$22, checking each track to see if it ap-
pears to have data on it. Most disks have
a pattern to the position of the data, and
if that pattern can be figured out it may be
possible just to check a few tracks to make
sure and then go on to step 2. Otherwise,
the data must be located one track at a
time.

Most disks use the standard tracks
(1,2,3,. . .22), but there are some which
use half tracks and some which use track
$23 (which cannot be read on all drives
since Apple drives were not designed to go
out that far).

When all tracks which contain some type
of data are located, go on to step 2.

Step 2: Find the Address Markers

Now tell Nibbles Away][how to read the
information on the tracks which have been
found to contain valid data. This is done by
going back to each of these tracks with the
TBE and finding the address mark for each
one. The address mark will be the first
three bytes following the gap. To see this
in operation, take a look at a track from the
System Master disk. After each gap either
D5 AA 96 for a DOS 3.3 master disk, or D5

The Best of Hardcore Computing Page 31

AA B5 for a DOS 3.2 disk will be seen.
These values should be noted alongside of
each track number which contains data.
Many times there will be only one, or
maybe two, patterns for all tracks.

After this, these tracks can be copied.
This is done by exiting the TBE (use Q) and
then selecting M for the modifier menu.
Then select B for back-up modifier. When
asked USE ADDRESS MARK?, answer Y
and then type in the address mark that was
noted for the range of tracks to be copied.
Simply press return to the rest of the ques-
tions and then return to the main menu.

Select N to enter Nibbles Away][, and
answer Y to the question CHANGE
DEFAULT OPTIONS? Use the return key
to move to the START TRACK prompt, and
then enter the first track to be copied. Press
return and then type in the last track to be
copied with the current address marker
setting.

If the tracks in the specified range are
not spaced at 1-track intervals, enter the
interval at the TRACK INCREMENT
prompt. Press return for the following ques-
tions, and begin the copy after inserting the
disks (when prompted). After returning to
the main menu, repeat the above proce-
dure for each range of tracks which can-
tains a different address marker.

Now comes the moment of truth! Try to
boot the copy disk. (If the original had a
write-protect tab, the copy should tool) If
the copy boots, then all went successfully.

Step 3: Find Additional Protection

If the back-up did not work properly,
there are a few things to look for.

1. Did all of the tracks which should have
copied do so? This can be seen while the
copy takes place as a Y or an N under that
track status location. If some did not, then
the address marker was probably not de-
termined properly. If this is the case, go
back to the TBE and try those tracks again.

2. If everything seemed to go well but the
copy refuses to work (it might help to try
the procedure again, maybe with the
source and destination drives reversed, to
make sure it was not a power glitch or other
such occurrence which messed things up),
the next step is to try the procedure with
the synchronized copy option selected.
Disks which use this method often make
violent head movements during their boot
procedure. This can be a clue to this type
of protection.

Additional Information

On some DOS 3.3 diskettes, the gaps
between the sectors are reduced in size.
In some cases they can be as small as four
or five bytes. When Nibbles Away][finds
the beginning of a section of data, it nor-
mally adds eight bytes of sync just before
the data. This will normally put sync bytes
into the gap before the data, where it
should be. However, if a disk has very
small gaps, then the added sync can over-
write the end of the previous sector. The

parameter FIX AMNT controls the number
of sync bytes which are added, so this
value can be reduced to prevent any data
from being overwritten. The value that Nib-
bles Away |[uses for the sync which it puts
in is contained in the parameter FIX VALU.
Normally this is a $7F, but it can be set to
any desired value.

It should be noted that Nibbles Away ||
regards any data byte which has its high
bit cleared to be a sync byte. So the $7F
which is normally in this parameter means
that a sync $FF is to be added. If the over-
ride standardizer option is selected, then
Nibbles Away][will not add any bytes; it
will simply convert the data which is
present before a sector into sync without
changing its value. This technigue can also
be used for disks whose gaps are very
small.

LONG TRACKS

Another itemn to watch for is disks whose
tracks appear to be very long. Some disk
protection schemes put garbage on a por-
tion of the track. When this garbage is read
back, more bytes are read in than were
written out. This causes the track to be
longer than normal, and in some cases it
becomes so long that the default
parameters for Nibbles Away][cannot find
the data properly.

DATA MIN/MAX

The parameters DATA MIN and DATA
MAX control the minimum and maximum
track lengths (in increments of 256 bytes)
which Nibbles Away][will accommaodate.
The normal value of DATA MAX is $1D, but
this can be set to a higher value, such as
$25 if a track appears to be very long. Even
though the track may read a large number
of bytes, many of these will be removed by
the nibble filter since they are garbage
bytes. This will assure that the amount of
data written back will not be too large to
fit on the destination track.

When Nibbles Away][finds a sector of
data, it looks ahead to find a second oc-
currence of the same pattern. This insures
that the sector has been read and located
correctly. On many disks, there is a primary
section of data called the address field, and
the actual data field follows. In between
these is a small gap which often contains
random information. This means that Nib-
bles Away |[should only match the num-
ber of bytes which are found in the address
field since the bytes in the gap may not
read as the same value every time.

FIND MAX

The parameter FIND MAX controls the
number of bytes which are checked dur-
ing this procedure. The default value of
$0C works in most cases, but some disks
use a smaller address field which may re-
quire this parameter to be set to a smaller
value. However, if this parameter is set too
low, then Nibbles Away][may identify the
match for a section of data whose first few

bytes are the same, but which differ later
on. Therefore, one should exercise caution
when lowering this value.

How to make parameter changes

Listed below are the parameters to
change in order to back up certain pieces
of software which require more than the
default values given with Nibbles Away |[.
If a number is listed within the “‘less than”
(<) and “greater than” (>) signs, it
corresponds to the number of the auto-load
file which will perform the listed function.
To use the auto-load files, see Chapter 6
in the Nibbles Away]| Manual.

To back up a program, first find its name
in the list of parameters. Directly across
from the file name is the auto-load file to
use if one exists. Remember that auto-load
files are within the "'less than” and ‘‘great-
er than” signs.

Directly below the name is a list of the
tracks to copy and what parameter
changes to make. If the letter ‘S’ appears
to the far left of the track number, set the
synchronization mode before copying
these tracks. If the word BY is used, set the
increment to this value; otherwise, use the
default increment of 1. Parameters which
are assigned values can be accessed un-
der the control parameter modifier. The
parameters ADDR and INS should be en-
tered under ADDRESS MARK and INSERT
MARK, respectively, in the back-up
modifier.

When the word SECTMOD appears be-
low, it means that a sector should be
changed using the track/sector editor
(TSE). Place the destination disk into drive
1; then perform the changes listed. The
command format is:

SECTMOD [.F =nn,C=xx,5 =yy,T =2z]
CHANGE ADDRESS A1 FROM A2 TO A3

The meaning of nn, xx, yy, zz and A1,
A2, A3 are explained below:

nn-This will be either 13 or 16 and
represents the disk format to be used. This
should be set by selecting the ‘O’ option
in the TSE, then pressing ‘F’ until the
proper format is shown in inverse.

xx-This will be either on or off and should
be set using the checksum option on the
options page, as above (‘C’ to toggle).

vy-This is the sector to be read.

2z-This is the track to be read. (See
Nibbles Away][Manual for details on how
to set these.)

After setting these options, use the ‘R’
option to read the given sector into the
buffer. Then change the information in the
sector, foliowing the conventions listed
below:

A1-This is the location to be changed in
the buffer.

A2-This is the old value.

A3-This is the new value.

If multiple changes are listed, they
should be performed in sequence. After
making changes to a sector, it should be
written back to the disk with the W option.

The Best of Hardcore Computing Page 32

Note: Parameters from Nibbles Away |
may be used in Nibbles Away J[. They must
be entered using the name of the desired
parameter listed in the Nibbles Away !
Manual. Nibbles Away | parameters may
not be entered under the global modifier in
Nibbles Away J[.

The following example shows a file that
incorporates many changes. Step-by-step
directions will be given on how to copy this
program. Line numbers have been added
to each line for reference. These numbers
do not appear in the parameter list.

1) EXAMPLE FILE (XXX)

2)05............ ADDR=D5 AA 96

3) SECTMOD [F = 16,C =0FF,T=00,5 =03
4) CHANGE ADDRESS 42 FROM 38 TO 18

5) OVERIDE STANDARDIZER

6) S 6-9 BY 1.5....ADDR=DD AD DA

8) 11-22BY 2....INS=AD FB E6 FF E6
9) SYNC SIZ=0A

10) DATA MAX =25

Line 1. The name of the program is
“EXAMPLE FILE". The abbreviation of the
company that markets the program is in
parentheses (XXX).The name of the com-
pany can be found in the table of abbrevi-
ations.

Line 2. The tracks to copy are given,
along with the parameter changes to make
before copying the tracks. First set the
ADDR parameter to D5 AA 96. These
changes are made from the back-up menu.
To get to the back-up menu first enter the
modify parameter menu (‘M’ from the main
menu); ther press ‘B’

Line 3. Some special changes must be
made to a certain sector (track 00, sector
3). Enter the TSE and use the 'O’ com-
mand to select the following options:

F Set up for 16-sector.

C Turn the checksum flag off.

Track 00, sector 3 needs to be read.
Type T, then 00, then S, then 3. Use the
R command to read the proper
track/sector.

Line 4. After the sector is in memory,
change address 42 from 38 (what it origi-
nally was) to 18. Write the track back to the
disk using the W command.

Line 5. Enter the back-up menu. From
this menu answer yes (Y) to the question
OVERIDE STANDARDIZER?

Line 6. Set the synchronized copy mode
when copying tracks 6-9. The S means to
make a synchronized copy. Also set the
increment to 1.5.

Line 7. Before copying tracks 6-9, set the
ADDR to DD AD DA.

Line 8. Copy tracks 11-22 with an incre-
ment of 2. Set INS to AD FB E6 FF E6. The
changes to INS are made from the back-
up menu.

Line 9. Set the SYNC SiZe to 0A. To
change SYNC SlZes enter the modify
parameter menu, and from this menu enter
the control menu (C). Use the arrow keys
to move the cursor to the SYNC SiZe
{(second column, third one down) and press
the space bar to change this value

Line 10. The DATA MAX value is
changed in the same manner as the SYNC
SiZe.

ACCOUNTING SYSTEM (BPI) <15>
(AL ADDR=D5 AA 96
11-11.....cevveenen.. INS=AD FB EG FF E6

SYNC SIZ=0A

APPLE PANIC (BS)

0-D
APPLE WORLD (USA)
0- 23

APPLE WRITER /// (APC)

s 0-22

AUTOBAHN (SRS) <6>
s 00
s 46
s95C5

<13>

A2-FS-1 (SBL)
0-0

15-21 BY 15........ ADDR=DB AB BF
REDUCED ERROR CHECK

Pl ommressorsivnes REDUCED ERROR CHECK
9595 REDUCED ERROR CHECK
A2-PB1 PINBALL (SBL)
B0 s rcememrsstrns ADDR=DS5 AA 96
DATA MAX=25
VS ADDR=DB AB BF
BEER RUN (SRS)
A R ADDR=DD AD DA
DATA MAX=25
$15-135

NOTE; Errors will begin to occur between track C.5 and
track 13.5. This is normal.

BORG (SRS)

500 ADDR=DD AD DA
§1.5-B5

5 D-20

CANNONBALL BLITZ (OLS)
ey e ADDR=D5 AA 96

SECTMOD [F=16,C=0N,T=17,5=0E]
CHANGE ADDRESS CD FROM 49 TO 60
CASINO 21 (DM)
02200 viismmaragsinsd ADDR=D5 AA 96
SECTMOD [F=16,C=0FF,5=03,T=00]
CHANGE ADDRESS 63 FROM 38 TO 18

CEILING ZERO (TKS)

B2 s iy ADDR=D5 AA BS

S=1 s ADDR=D6 AA B5
INS=DE AA EB F9, SYNC
SIZ=0A

COPTS & ROBBERS (SRS)
Same as Beer Run

COUNTY FAIR (DM)

(AN r £ e ADDR=D5 AA B5
CRANSTON MANOR (OLS)
Q=2 snavavinis ERASE DEST TRACKS

DARK FOREST (SRS)

s 00 ADDR=DD AD DA
ADDR=D5 AA AS
(Errors on 6-8 and last few tracks OK)

DB MASTER (OLD) (STW) <9>
D8 s ADDR=D5 AA 96
6.5-22.5
DB MASTER (NEW) (STW) <19>
sO:Bmnmaias ADDR=D5 AA 96
6.5-22.5

DEADLINE (IC) <DOS 3.3>

DR nrn e ADDR=D5 AA 96
DESKTOP PLAN Il (VCP) <16>
022 s m) ADDR=D5 AA 96
INS=AA EB FD

SYNC SIZ=0A, FIX AMNT=04
DUNG BEETLES (DS)

[BE 1T = e RSN ADDR=D5 AA B5
ey ADDR=F5 F6 F7
4-22

SECTMOD [F=13,C=0N,7=00,5=01]
CHANGE ADDRESS 6D FROM 01 TO
CHANGE ADDRESS G6E FROM 61 TO

ELIMINATOR (Al)

021! ADDR=D5 AA 96
SECTMOD [F=16,C=0FF,T=03,5=00]
CHANGE ADDRESS 2E FROM 20 TO EA
CHANGE ADDRESS 2F FROM 30 TO EA
CHANGE ADDRESS 30 FROM 72 TO EA

EPOCH (SRS) Same as Beer Run

ESCAPE (SBL)
L R ADDR=D5 AA 96

ESCAPE FROM ARCTURUS (SNS)

0-22 s ADDR=D5 AA 96
OVERIDE STANDARDIZER
OVERIDE NIBBLE FILTER

EXECUTIVE SECRETARY (PBS)

7B
69

<DOS 3.3>

0:-294, L ne e i) ADDR=D5 AA 96
DOS 3.3
EXPEDITER][(OLS) <2>
022, ADDR=D5 AA 96
ERASE DEST TRACKS
FIREBIRD (GS) <7>
1 2 OV ADDR=DD AD DA
515BS5
GAMMA GOBLINS (SRS)
L iR e ADDR=DD AD DA
51.5-B5
5. D055 s ADDR=FF FF FF D5 AA EE
DATA MAX=30
GENETIC DRIFT (BS)
00 ADDR=D5 AA B5
3 e AN ADDR=BB D5 BB
456 BY 1.5
7.5-B.5
[V N S ADDR=D4 D5 BB
Ei5-12.8.ccummmnzinss ADDR=AD B5 DE
GOBBLER (OLS) <1>
0-22.....ccciiviiiinnnn, ADDR=D5 AA BS
ERASE DEST TRACKS
GOLD RUSH (SS) <DOS 3.3>
022, ADDR=D5 AA 96
GORGON (SRS)
SO0:anmna ADDR=DD AD DA
DATA MAX=25
515L5
sE5ES
$sD5DS5.cis ADDR=D5 AA B5
GUARDIAN (CTS)
1 PR ADDR=D5 AA B3
1 A TR L ADDR=D6 AA B5
INS=DF AA EB F7, SYNC
SIZ=0A
HADRON (SRS) Same as Beer Run
HIRES ADV -1 (OLS) <D0S 3.2>
0-22.....cocciiiiinnn ADDR=D5 AA BS
HIRES ADV -2 (OLS) <D0S 3.2>
0:22. i ADDR=D5 AA B5

The Best of Hardcore Computing Page 33

HIRES CRIBBAGE (OLS) <20> POOL 1.5 (IDS) TAX PREPARER (HS) <DOS 3.3>
S0EE. ADDR=D5 AA B5 T ADDR=D5 AA B5 002, oo eeee ADDR=D5 AA 96
1E-21
INTERNATIONAL GRAND PRIX (RBS THRESHOLD (OLS <>
0C ADDR=FF FF FF (AA) SECTMODIF=13,0=0FF T=08,5=07] 0-22 (A)DDR=DS AA BS
...................... ol gl il f LT v ADDRDE AAES
INVOICE FACTORY (ML) <D0S 3.3> SECTMOD[F=13,C=0FF, T=00,5=03]
G ADDR=D5 AA 96 CHANGE ADDRESS 63 FROM 38 TO 18 TIME ZONE V1.0 (OLS)
JABBERTALKY (MT) <D0S 33> PULSAR |[(SRS) <18> 3'3;5 Al SR
R ADDR=D5 AA 96 o T Bevense.
i OVERIDE STANDARDIZER THEN DISK A
JAW BREAKER (OLS) as 1ol SECTMOD [F=16,C=0N,T=03,5=05]
022.....................ADDR=D5 AA B5 5-1D. CHANGE ADDRESS 5B FROM 4C TO 60
ERASE DEST TRACKS RASTER BLASTER (BC) SECTMOD [F=16,C=0N,T=03,5=03]
LETTER PERFECT (LJK) T Tl —— ADDR=D5 AA 96 CHANGE ADDRESS AB FROM A9 TO 60
0-22.......c0n.........ADDR=DS5 AA B5 DATA MIN=18, DATA TORPEDO FIRE (SSM)
MAX=40 0-22 ADDR=D4 AA B7
MASTER TYPE (LNS) §$ 511 BY 4.........ADDR=AD DE, DATA MIN=13 U Sormmereees
L R e ADDR=D5 AA BS s 6-12 BY 4 TUNNEL TERROR (MS)
SN e ADDR=D4 AA B5 s 755 BY 4 R ADDR=D5 AA B5
ST SEEF‘SEFRSU%;S}B gﬂ"}‘l 5 1.53.5 BY 2 T M —— ADDR=D6 AA B5
=13,C=0FF 5=03,T= INS=DF AA D7 EB, SYNC SIZ=0A
CHANGE ADDRESS 63 FROM 38 TO 18 RICOCHET (MT) <DOS 3.3>
SECTMOD [F=13,C=0FF,5=0A,T=02] B s et ADDR=DS5 AA 96 TWERPS (SRS)
CHANGE ADDRESS 2E FROM 23 TO 2E HOACH HOTEL (ML) S U'O ADDR-DD AD DA
_ s15E5
MicnowAvE (cc) 0'0 ADDR:D& AA Bs 1A_1A
T ADDR=D5 AA 96 Plososmbny ADDR=EE EA FE
SEGTMOD [F=16,C=ON T=02.5=01] 422 ULYSSES & GOLDEN FLEECE (OLS) <2>
CHANGE ADDREéS DA IEREIM IAQ 0 AD SECTMOD [F=13,C=0FF,T=00,5=01] 1 R ADDR=D5 AA 96
CHANGE ADDRESS DB FROM 60 TO 03 CHANGE ADDRESS 75 FROM 01 TO 7B ERASE DEST TRACKS
CHANGE ADDRESS DC FROM 8D TO 81 CHANGE ADDRESS 76 FROM 61 T0 69 VISICALC /// (APC)
CHANGE ADDRESS DD FROM 7E TO 60 SNACK ATTACK (DM) s 0-22
L — ADDR=D5 AA B5
MISSILE DEFENSE (OLS) <205 VISICALC 3.3 (VCP)
T ADDR=D5 AA BS SECTMOD (F=13,C=0FF,5=03,T=00] e ADDR=D5 AA 96
p T CHANGE ADDRESS 63 FROM 38 TO 18 gog ADDR=D5 AA B5
o i - SIS SNAKE BYTE (SRS) Same as Beer Run (ERRORS TOWARD END OK)
SECTMOD [F=16,C=0N,T=18,5=03] SNEAKERS (SRS) VISIDEX (VCP)
CHANGE ADDRESS B1 FROM 49 TO 60 $00................ADDR=DD AD DA N e ﬁ\IDSDR[;EDEAAéBBED
$15C5 =
02z - ADDR=DS A % ¥ SUSD5.........ADDR=D5 AA BS SYNG Si2=04, HIX AMNT® 04
SOFTPORN ADVENTURE 3.2 (OLS) <i> VISIFACTORY (ML)
el s, TR 022, ADDR=D5 AA BS 022,ADDR=D5 AA 96
""""""""""" i O S S e
s 15€5 SOFTPORN ADVENTURE 3.3 (OLS) <2> ghomuicr (e 1o GmGFF 1201 S0
T T — ADDR=FF B5 D5 AA % S ADDR=D5 AA 96 : e
e e CHANGE ADDRESS 84 FROM 4C TO AD
OUTPOST (SRS) CHANGE ADDRESS 85 FROM 8E TO E9
O ADDR=DD AD DA SPACE QUARKS (55) CHANGE ADDRESS 86 FROM AE TO B7
51595 00.......... ..ADDR=D5 AA B5
B5BS. ..o ADDR=D5 AA AD [ADDR=FF DF DE MENTERDEE] s
it s Moo ADDR=DS AA
PADDLE GRAPHICS (OLS) <20> 3583 SYNC SIZ=0A, FIX AMNT=04
0-223 igggfgg i: gg ;955‘(5 2 VISISCHEDULE (VCP)
S X D-15 1 T ADDR=D5 AA 96
PEEPING TOM (ML) INS=DE AA EB
0D ADDR=D5 AA B5 SPACE WARRIOR (8S) SYNC SIZ=0A, FIX AMNT=04
[PR ADDR=F5 AB BE 00, ADDR=D5 AA BS VISHERRE faH
495 DATA MAX=30 (VCP) A
SECTMOD [F=13,C=0N,T=00,5=01] e e ADDR=DF AD DE [e T e ﬁiDD-R-D5 AA 96
CHANGE ADDRESS 6D FROM 01 TO 78 58 BY 3 SRS B
CHANGE ADDRESS 6E FROM 60 TO 68 i-%ﬁ-g\(’ Al oo
. VISITREN
<1>
Pf?znsus 2 ‘OLS}DD;‘:% AR BS > STAR BLASTER (PDS) T ADDR=D5 AA 96
.................... ERASE DEST TRAGKS 0 0.....ADDR DS AA 96 INS:DE M EB
7.20 BY 15...........ADDR=DF AD DE SYNC SIZ=0A, FIX AMNT=04
i <
EEI)RSONAL FINANCE MGR. (SDS) <D0S S e— <005 45> WORD HANDLER Il (8VS}
s ABbR=DS A 68 022, oo, ADDR=D5 AA B5 [1)?5;; ADDR=D5 AA 96
PHOTAR (STP) <p0S 3.3> SUICIDE (PDS) ek 1Crvviooivvvvver.... ADDR=FF DF DE
002 i ADDR=D5 AA 96 (1) T ADDR=D5 AA Bb
11.5-22 BY 1.5..... ADDR=DF AD DE ZERO GRAV. PINBALL (AGC) <D0S 3.2>
AW ASHBUCKCER (D0 XL ADDR=D5 AA B5
022, oo ADDR=D5 AA 96
The Best of Hardcore Computing Page 34

Technical notes and making back ups using

Back-It-Up II + Parameters

A great variety of schemes are used by
software houses to copy-protect their dis-
kettes. Two methods (synchronized tracks
and bit insertion) are discussed below,
along with instructions for copying disks
that employ these methods.

Syncronized Tracks

Some software houses have greatly in-
creased the accuracy of their synchroniza-
tion requirements, which can be done if the
tracks are not erased before each write cy-
cle. To do this, change parms OF and 10
to 01. Also, changing parm 0C to x8 im-
proves sync accuracy (where X = any
value).

Bit Insertion

It has become commeon practice to test
for a nibble copy by writing one or more of
the bit slip marks out at the self-sync tim-
ing rate. To copy these disks, change:

parm 11:00

parm 15:30 (or 60; try both if necessary)

parm 17:03

parm 2A:0A

parm 18-1A to whatever the address
marks are as shown in the upper left-hand
corner of the screen.

NOTE: Any time parm 11 is changed to
00, it is likely that you must also compress
tracks.

The instructions for copying disks pro-
tected by bit insertion must be taken in
order or they will not produce a workable

copy.
Peeking at the Write Protect Tab

There are also some copy-protection
methods which involve looking to see if the
diskette is write-protected. If the diskette
needs to be write-protected, this will be in-
dicated at the end of the parm listing.

How to Read the Parameter List

Look for your program in the list. (The
names are in alphabetical order.) On the
far left-hand side of the listing is a letier
which corresponds to one of the following
required changes:

S - set synchronization mode.
D - set decode mode.

P - set compressed mode.

N - set normal mode.

C - set nibble counting mode.

Back-It-Up Il + is a product of Sensible Software, Inc.

There may be the word BY following the
track number. This is the value of the incre-
ment. If no value appears here, use 1.

Next will appear the parameter changes
for copying the given tracks. The format is:

parm : value
where parm is the parameter number to
change and value is the number to set the
parameter to.

The dash (-) is used to indicate a range.
The notation 04-0A:00 means to set all of
the parms from 4 through and including OA
to 00. The same holds true for instructions
such as copy tracks A-E. This means copy
tracks A, B, C, D and E.

Remember: All disks must be copied in
the given order.

A Sample Listing

1) INVADERS

D0

3) S 1-10 BY 3 00:FC 01:EE 09-0A:BB
4) P 25

1) The program name is Invaders.

2) Set mode to decode before copying
track 0.

3) Set the mode to synchronized and
change parameter 00 to FC, 01 to EE and
09 through QA to BB. Set the increment to
3 and copy tracks 1 thru 10.

4) Set the mode to compressed and copy
track 2.5

One final note: Before writing to ask about
copy instructions that apparently do not
work, ensure you have done the following:

|. Be centain you followed the copy in-
structions in order.

2. Be certain you followed all of the in-
structions, such as write-protecting the
copy before using it.

3. Be certain you are using high quality
diskettes to make the copy. You can be
certain the original was. 16-sector pro-
grams require double density diskettes.

4. If the status line shows write errors,
compress the track. This will compensate
for drive speed to some extent.

5. Try swapping drives; that is, put the
original in drive 2 and the copy in drive 1.
Make certain you write-protect the original;
otherwise, you might accidentally write to
it and destroy it.

6. Try putting the copy on another dis-
kette. You will encounter defective disks in
even the best brands.

7. Try the copy on at least one other set
of drives. Some drives are better or worse
than others.

8. Try changing parm 25 to 01. This
reduces error checking a little bit but usual-
ly does no harm to the copy.

A [I}-:IE'I1I-FIES GRAPHIC ADVENTURES

B 22 commemmesin 16:FF
AKEM-STONE

D 0-22

ALIEN RAIN

N 0-5

N B:Fians 00:FE 0D:21 QE:00
APPLE ADYENTURE
N 022 e 00:FE
APPLE PANIC

N 0-5

T 51 O S 0O:FE

APPLEWRITER /{/
S 0-22

Not-e: On ver. 2.1 change 11:02

ASTEROID FIELD
N 0-12
Note: You may need to compress tracks 0-2 and 11

A2-PB1 PINBALL
N 0-15

gUTOBAHN

BAG OF TRICKS
e | 00:FE 11:00 15:40 17:02
18:FE 19:FD

BEER RUN
S0

§15D5
BILL BUDGES SPACE ALBUM
N 0-11

Ela._lz. BUDGES 3-D GRAPHICS PACKAGE

N 4-8

N 11-18

BORG

ND

DS 1.5-B.5........cc. 00:FE 01:DD 02:AD 03:DA
04-DA:00 0B:0C

DS D-14

gl’algEN LGR, ACC RCV, & PAYROLL

N 12-22
<1853 1 oo 11:00 15:18 17:04 18:AD
19:FB 1A:E6 1B:FF

!?U%ATTACK Note: requires version 2.2 or later

SD 1D-22 BY 5........ 00:FE 01:AA 02:D5 03-0A:00
0B:0C OF:01 10:01 16:FF
22:02 24:02 25:01 26:02

28:02
Note; D-speed must be adjusted for nibble count.

The Best of Hardcore Computing Page 35

CANNONBALL BLITZ
N 1-22

B Dissamsaiisnssng 0B:06 05-0A:00 16:FF
CASINO
5 1 o S RPO— 00:DB 11:00 15:C0 17:08

19:AA 1E:DB 1F:DB
CASTLE WOLFENSTEIN
PR i 00:FE

CASTLES OF DARKNEBSS

N 022, 00:D

DCOGPTS & ROBBERS

SD 1.5F5.............. 00:FE 02:AD 03:DA 04-0A:00
0B:0C

COUNTY FAIR

[b (S S 11:00 15:40 17:02 18:AF
1E:DE

CRANSTON MANOR

N 0-17

N 19-22

N 1By 13:1F

CROSS CLUES

0:-22. ..conncssnsisminss 14:FE 15:60 17:04 19:BF

1B:AA

CROSSFIRE

S 022

CROSSWORD MAGIC

SD 0-22........c0c0nnne. 00:FE

THE CROSSWORD MACHINE

N 0-22

CRUSH CRUMBLE AND CHOMP
D 0-22

CYBER STRIKE
NO

N 3B

N 11-1C
CYBORG

CYBORG (new version)
D8 0-22.......00000000 00:FE 03:00 05-0A:00 0B:0C

DARK FOREST
D0

S 6.5-225
Note; Do NOT use the decode option on track 1.

DB UTILITY PACK
Same as DB MASTER

DESK TOP PLANNER
D 022.maungnia 11:00 15:40 17:03 18:AA
19:EB 1A:FD

DIC’-TIO-NARY

N 0-1F

8 -, 1 RS 0B:05 16:FF
DOG FIGHT (OLD)

N 01

N 4-10

ERUAGON FIRE

Note: This is 2 16 sector diskette.
ELECTRIC DUET

N 0-

D2 11:00 15:60 17:02 18:DE
19:AA
ELIMINATOR
N 0-20
N 22
€ Puissssrsneesmmmmos 16:FF

EPOCH

NO

N 1.5-F.5
EXPEDITER
N 0-22

E-Z DRAW
DS 0-22

FALCONS
ND

D 1.5-4.5 BY 1.5.....00:FE 01:DF 02:AD 03:DE
04-0A:00 0B:0C

EI!]FIUEBIRD
0 M 00:FE 01:DD 02:AD 03:DA
04-0A:00 0B:0C

FLIGHT SIMULATOR
N 0-22

N 0-21 BY 1.5

N 7-8

N85

EOOOSBALL
SD 1.5956............ 00:FE 01:DD 02:AD 03:DA
04-0A:00 08:0C

D B-22......cccevienns 256:02 26:03 27:03
B o v b s OF:01 82 01 12:7E 2117

GAMMA GOBLINS
DS D

DSD
DS 1.5BS.............. 00:FE 01:DD 02:AD 03:DA
04-0A:00 0B:0C

GENETIC DRIFT

D58 e 00:FC 01:BB 02:05 03:DD
04-08:00 09:BB 0A:BB 0B:0C

01:D.
D E5-225........... 01ADUZBSUSDE
GENERAL MANAGER
N 0-22

Alternate method

N 1-22

]) A 05-0A:00 0B:06 16:FF
P It 00:FE 03:00 05-0A:00 0B:0C

GORGON

NO

S15F5
Note: New versions may use SNEAKERS parms

HELL FIRE WARRIOR
D022

HI RES CRIBBAGE

N 0-2

N 4-22

Nidswmmmamma 13:1F

HI RES ADVENTURE -2

N 0-22

BI%NGHY BOY

N 15 00:FE 01:AD 02:DE 03:BE
04-0A:00 08:0C

N 3.5-13.5BY 4

N 515 BY 4

N 6-16 BY 4

:\IN{-}I-EHNAT'ONAL GRAN PRIX

N2
N 4-C
N 11

INVENTORY MANAGEMENT SYSTEM
D 0-22

JAWBREAKER
N 0-22

KAVES OF KARKHAN

D 0-22

LAFF PAK

D 1-22

DA 05-0A:00 0B:06 16:FF

LOGO

NO

N 2-22

B Ve 16:FF

LOWER REACHES OF ASPHAI
D 0-22

MARAUDER
bl R —— 05-0A:00 0B:06 16:FF

D QB2 00:FE 03:00 05-0A:00 0B:0C

MOUSKATTACK
N 1-22
15] S ——— 05-0A:00 0B:06 16:FF

MISSION ESCAPE
Da

N 1-1D

MISSILE DEFENSE
N 0-22

NEUTRONS
D 0-22

OO-TOPOS
D 0-22
00-TOPOS (NEW)
08 0-22.....cconmrrnnen 00:FE 03:00 05-0A:00 0B:0C
ORBITRON
DCO
DS VBB mamies gg:FE gB:DD 02:AD 03:DA
DS Bb i 01:B5 02:D5 03:AA 14:FF
OUTPOST
DCO
DS 1.5-95......cc000.s 00:FE 01:DD 02:AD 03:DA
04-0A:00 0B:0C
W B By mmiie 01:05 02:AA 03:AD

PEGASUS I
N 0-22

EI=1S1 3& PFS REPORTS

b 5 P 01:93 02:F3 03:FC 04-0A:00
11:00 15:E0 17:04 18:93
19:F3 1A:FC 1B:FF

Note: Write protect copy diskette before using.

BSFS &1 PFS REPORTS (new release)

BSE 2..ccvummmimannnd 11:02 14:F8 15:60 17:04
19:F3 1A:FC 1B:FF

Note: Set max retries to 2. Write protect the copy

disk before using.

PHANTOMS 5
NO
N 2-1C

The Best of Hardcore Computing Page 36

PRISM PRINT
S 0-21

THE PRISONER
N 0-22

NPULSAR]

N 1A.5-1D.5
RASTER BLASTER
DS 0

BS: Fhlemmeens 00:FE 01:AD 02:DE 03-0A:00
08:0C

DS 3.5-F.5 BY 4
DS 5-11 BY 4
DS 6-12 BY 4

REAR GUARD

RETRO-BALL

1

Sdadn

R
[aE R v)

P = =Moo
v
£

L R R

m
-

EFISAL

=E==7] oooooooo

rIonnpa

Pwe
r

RINGS OF SATURN
D 0-22

SABOTAGE

N 0-22

SAT ENGLISH (SIDE 1)
ggt%: This two sided disk requires version 2.2.

B 61.32 01:EE 02:FC 03:97 04-0A:00
8D 45, 00:FE O1:FF 02:FF 03:DB

Note: The copy process may ‘hang up* during the
analyze mode of tracks 4 & 5. This is normal. If it
happens, press RESET and try the track again.

SAT ENGLISH (SIDE 2}!
Note: this requires version 2.3, See all notes for
séigEUL Side 2 is very similar.

01:97 D2:EE 03:D5 04-0A:00

00:FE 01:FF 02:FF 03:DB
26:06 28:06

ﬁ(_iRzEENWFIITEH

B0 s Besnn 05-0A:00 0B:06 16:FF

SNACK ATTACK

N D=V 11:00 15:40 17:02 18:AF
19:DE

SNAKE BYTE

PO

S 15F.5

SNEAKERS

NO

S 1.5F5

SNEAKERS (NEW)

DS D

DSD

DS 1. 5 . 00:FE 01:DD 02:AD 03:DA
04-0A:00 0B:0C

D8 8. 00:FF

SNOGGLE (JOYSTICK)
N 0-2
N =Bicisain i DOTFE

SOFT PORN
N 0-22

SPACE RAIDERS
N 0-4

gl’:}ACE WARRIOR
D1-5BY 4........

D 2.56.5 BY 4
D35
D 8-11

S%EngAL DELIVERY SOFTWARE

00:FE 01:DF 02:AD 03:DE
04-0A:00 08:0C

S'EAR BLASTER
D 7-20 BY 15......... 00:FE 01:DF 02:AD 03:DE

04-0A:00 0B:0C
STAR THIEF
Note: Requires Vers. 2.2
NC 0-13
NG 22......coccoommminns 16:FF 21:05 22:02

Note: You will have to open the copy drive to ad-
just the D-speed. This is required to preserve the
nibble count.

STEP BY STEP (new)
D 0-22

SUICIDE
Do

D 11.5-20.5 BY 1.5..00:FE 01:DF 02:AD 03.DE
04-0A:00 08:0C

SUPER SCRIBE
N 0-22

gl.éPER STELLER TREK
D 128y 00:FE 01:EE 02:EF 03:FE
04-0A:00 0B:0C

SWASHBUCKLER
D022 o i 00:DB 11:00 15:C0 17:08
19:AA 1E:DB 1F:DB

TEMPLE OF ASPHAI
D 0-22

TETRAD
N 0-22
THIEF
DO

D VeBiemssmamd 00:FE 01:AE 02:DE 03:FE
04-0A:00 0B:0C

BS Ao 01:DB 02:AD 03:FE OF:00
OF:01

Note; Drive speed must be exactly set according to
APPLE's D-speed test. Vers. 2.2 and above may
copy tracks 4 & 5 by preserving the nibble count.
To do this, change parms: 16:FF, OF:01, 10:01,
then copy tracks 4 and 5 synchronized.

THRESHOLD
N 0-22

TIME ZONE (disk 1)
DS 0-22

TIME ZONE (remalning diskettes)
N 0-22

TWERPS
PO

N 1.5-E.5
N 1A

ULTIMA (player master side)
N 0-22

ULTIMA (program side)

N 022......cccceeene, 00:FE 25:08

Note: Set retries to 3 and recopy tracks with read
or write errors as many times as required to copy

properly.

HIﬁYZ%SEs AND THE GOLDEN FLEECE
[BN L £

VISICALC /!

S 0-22

Note: On Ver. 2.1 change parm 11:02.

VISICALC 16 (Early verslons)
N 0-22

VISICALC 16

Do

D 2-16

VISIDEX

D 022.........11:00 5 BU 17:03 18:AA
19 EB 1

VISIFILE

D 022...........11:00 15:40 17:03 18:AA
19:EB 1A:EC

VISISCHEDULE

D 0-22......ccooevenenn 11:00 15:60 17:03 18:AA
19:EB 1A:EC

VISITREND/VISIPLOT

D 0-6

D 8-22

e e o S 1?0015 40 17:03 18:AA

19;EB 1A:FC

Note: separate versions copy allke.

VISITERM

D05

D 7-22

e L B 11:00 15:20 17:03 18:AA
19:EB 1A:FC

WIZARD AND THE PRINCESS

N 0-22

WIZARDRY

S50

N 1-9

N F-22

e

BlE .. eecmmiriini Og 83 0C:08 OF:01 10:01

Mote: Place a write protect tab over the notch in
the copy of the boot side.

ZORK | & Il (new versions)
D D-22 05:00

ZOOM GRAPHICS
DS 0-22

The Best of Hardcore Computing Page 37

How to make back ups using:

Copv]l plus Parameters

The following is a list of parameters to
change in order to back up certain pieces
of software with Copy !l Plus version 4.1.
To the right of the program name is the
abbreviated name of the publisher. For a
complete list of the publishers, refer to
page 23.

When making a backup, be sure to follow
the steps in order. Often a parameter will
not be re-listed if it is set for a prior range
of tracks.

To back up a program, first find its name
in the list of parameters. Directly below the
name is a list of the tracks to copy and
parameters to change. If the word BY is
used, set the increment to the value that
follows it. Use the default increment of one
if no other figure is given.

When the word SECTMOD appears, it
means that a sector should be changed
using the Track Sector-Editor. Be sure to
patch the read/write routines if the listing
shows PATCHED and to use the correct
DOS (3.2 or 3.3). Place the destination disk
in drive one, then perform the changes list-
ed. The command format is:

SECTMOD [F=n, C=n, T=n, S=n]
DOS 3.n PATCHED
CHANGE ADDRESS A1 FROM A2 TO A3

The meaning of F, C, S, T and A1, A2,
A3 are explained below:

F- Disk format to be used. The vaiue (n) will
be either 13 or 16.

C- Toggle. The value (n) will be either on
or off.

T- Track to be modified.

S- Sector to be modified.

A1- Location to be changed in the sector
buffer.

A2- Old value.

A3- New value.

The middle line from the example gives
the DOS (3.2 or 3.3) patched. Some
diskettes can be duplicated using the
default parameters (select the Bit Copy
option from the main menu). If the diskette
you wish to back up is not listed, try the
default settings anyway.

An asterisk (+) next to the product name
indicates that those parameters were
submitted by users and have not been
verified.

Copy][plus is a praduct of Gentral Point Software

3-D GRAPHICS SYSTEM (CP)

0-8
11-12
15-17
Alternative Method
0-2
4-8
11-18
A2-PB1 (PINBALL) (SL)
1] [S———————— 10:96
1-15........ccceennn A3 E:DB F:AB 10:BF 44:1
45:D 46:F
ABM (MU)
0-22
ACCOUNTANT (DSS)
0-22....cc0immsmimvemsin 3C:1 4B
ACE CALC (ART)
0-22
Alternate Method
022 o 10:96
ACE WRITER (ART)
022, 10:96
Alternate Method
0-22
ADAPTABLE SKELETON (UNK)
022 ocvvsmenimnnss 20:96 9:0 19:AA 1F:AA
ADDRESS BOOK (MU)
85 e D:1 10:96 24:96

ADVANCED VISICALC
FOR THE APPLE lie (VCP)
1L 10:96 24:96 D:

ADVANCED VISICALC
FOR THE APPLE /// (VCP)
Same as Visicalc ///

AE (BS)
1 P A:3 E:DD F:AA 10:AD
1.5-C5
E-1E.5 Step 1.5......A:3 E:D5 F:AA 10:96 51:1
52:03 53:18 54:0

AGENDA FILES (AC)
D22 sisinsuesvasssonins 10:96

AIR SIMULATCR (MS)
0F

AIR TRAFFIC CONTROLLER (AG)

0-22c0mzssnania 10:96

2 31:0 50:1 10:96
AKALABETH (CP)

[A 9:0 31:0
2o E:DE F:AA 10:AD
6-18

ALGEBRA ONE & TWO (EW)

0-22
ALGEBRA SERIES (EW)
0-22.......ccrcenn..... 10:96 9:0 24:96 D:1 310
ALIEN RAIN & TYPHOON (BS)
05....0svcceneencenio 80 31:0 D:D5 F:0
RSN =) -
ALKEM STONES (L10)
0-22...ccvvvcrrer A3 10:96
ALPHA BYTES (LTS)
T R)
AMPERMAGIC (AD)
0-22
APPLE ACCESS /// (UNK)
0-22
APPLE ADVENTURE (AC)
022 D:1 10:96 24:96
APPLE BARREL (CDS)
0-22

APPLE BUSINESS BASIC (AC)
0-22

APPLE BUSINESS GRAPHICS (AC)
02 rsnamanag 0:1 10:96 24.96

APPLE CILLIN Il (XPS)
0-C

APPLE Il BUSINESS GRAPHICS (AC)
£ SR o D:1 10:96 24:96

APPLE /// BUSINESS GRAPHICS (AC)
0-22
(ERROR 2 OKAY)

APPLE FORTRAN (AC)

022

APPLE LOGO (AC)

0-22

KT A:1 4B:1 50:1 E:AA 1C:AA
38:1 4D:8

Alternative Method

0-22

e A:1 4B:1 50:1 E:FC 19:FD
1C:AA 1FEE

Alternative Method

0-22

b R s A:1 4B:1 50:1 E:AA 1C:AA

Alternative Method

0-22

Tomssvemmenmeocany A:1 4B:1 50:1 38:1 4D:8

The Best of Hardcore Computing

Page 38

Alternate method

2-22
Ol D:1 2496 10:96
A e e A:1 50:1 4B:1 E:AA F:D6

10:EE

(ERROR 6 OK)

NOTE: We have been told that Apple Logo
requires a lot of persistence! Keep retrying track
1 until the disk works. The disk drive speeds
need to be within .1 of 200 milliseconds per
revolution

APPLE PANIC (BS)

0-D

Alternate Method

QB nmmanamene QU ED
6D At EDE

APPLE PASCAL 1.1 (AC)
Use COPY DISK from MAIN MENU

APPLE PILOT (AC)
0-22

Alternate Method
0-22..................... 10:96 24:96 D:1

APPLESOFT COMPILER (MIS)
0-22

APPLE WORLD (USA)
0-23

APPLE VISISCHEDULE /// (VCP)
Copy disk from main menu.

APPLEWRITER Il AND //e (AC})

022 .o 10:96

Alternate Method
0-22...........000.00.. D01 10:96 24:96 3F:1
APPLEWRITER Il PRE-BOOT (VX)
0-22..iiiiiiiiinnns 10:96 9:0
Alternate method

4 T S 1 L 10:96 9:0 3F:A
APPLEWRITER /// (AC)

0:22 s s D:1 10:96 24:96

APPOINTMENTR HANDLER (UNK)
0-22

APVENTURE TO ATLANTIS (SY)
e 10:96 24:96 9:0 31:0 DA

A2-PB1 (PINBALL) (SL)

=18 A3 EDBFAB 10:BF 44:1
45:0 46:F
ARSENE LARCIN (LOD)
£ £ PO 10:96
AUTOBAHN (SRS)
0
QB G DA
95C5

AUTOMATED ACCOUNTING FOR
MICROCOMPUTERS (UNK}

B2 10:96
AZTEC (DM)

1 e e) D:1 10:96 24:96
BACK-IT-UP Il (SEN)

0L s ossomenir e 10:96 9:0
- Ho R — 10:B5 A3

BACK-IT-UP Il + 2.3 (SEN)
(455 10:96 9:0
(ERROR on track 1 okay)
Note: Sensitive to drive speed.

BAG OF TRICKS (QS)
3l e e OE:D6 3E:2 34:1 35:0F

Alternate Method
0

1815 i E:D6
SECTMOD [T:0 S:8] DOS 3.2 PATCHED
Change address AD from 20 to 60.

BANDITS (SAS)
0

1.5-1A5

1C.5-1F5..............D:1

BASIC FRANCAIS (LOD)

L 10:96

BASIC TUTOR SERIES (EC)
0-22.......ccevneee.3:0 10:96

BATTLE CRUISER (MGI)

0-22

. 44.0

BATTLE FOR NORMANDY (SSI)

¢ 20— E:D4 10:B7 34:1 37:6E 38:FE
Alternate Method

0:22 i E:D4 10:B7 341 38:FE
BATTLE OF SHILOH (SSI)

4 S E:D4 10:B7

BATTLESIGHT (VER)
Use COPY DISK from MAIN MENU.

BEER RUN (SRS)

I 9.0
1505 ..D:1 38:40
BEST OF MUSE (MU)

0-22

BILL BUDGE’S 3-D GRAPHICS (CP)
08

1112

15-17

Alternate Method
0-22

BILL BUDGE'S SPACE ALBUM (CP)
0-B

BILL BUDGE'S TRILOGY OF GAMES (CP)
0-A

BIRTH OF THE PHOENIX (PHO)

0-9
BOLO (SY)
DB i D:1 9:0 24:96 10:96
BOMB ALLEY (SSI)
0-22....cccoviinriiinnns E:D4 10:B7 34:1 37.6E 38:FE
BORG (SRS)
¢ A — 10:96 9.0
1.5B.5 ...D:1 24:96 A:3 E:DD F:AD
10:DA 3B:40
D-20
Alternate method
O E:DD F:AD 10:DA D:1 22:00
23:00 24:00

BRAIN SURGEON (UNK)
0-22
Error 1 on Trk 11 OK,

BRIDGEMASTER (DY)
0-22

C-DEX TRANING PROGRAM (CX)
DN E:D6 F:AB 10:96 1A:AB 1D:AB
20:AB

CANNONBALL BLITZ (SOL)
0-22..ccccviiiireennnn, 10:9

SECTMOD [T:17 S:0E] DDS 33
Change address CD from 49 to 60

Alternate method

0-22

L 3B:1 A:1 4B:1 4D:8 50:1 (Er-
ror 6 OK)

Alternate method

SECTMOD [T:17 S:0E] DOS 33
Change address C8 from 49 to 60

CARAIBES (LOD)

[e e 10:96
CARTELS AND CUTTHROATS (SSI)
DRZ AR, E:D4 10:B7
CASINO (DM)
022, v conamseions Do 90
CASTLE OF DARKNESS (LOG)
Dl e D:1 24:96 10:96 9:0
e e E:AB F:AB
CASTLE WOLFENSTEIN (MU)
0-22... v D21 31:0
CAVERNS OF FREITAG (MU)
D-2 . cvomanianmses D10 1096
BB crrmre F:DA
CAVES OF OLYMPUS (SAM)
D0 e s b 10:96 9:0
CEILING ZERO (TKS)
0-2
;3 fy P e 9:0 E:D6 1C:D6 34:1 38:F9
4F:1
CELLS (UNK)
0-22
CHESS 7.0 (OD)
0827 v 10:96 9.0
Alternate Method
02200 nminang 10:96 9:0 8:1 3E:2
LE CHOMEUR (LOD)
OB 10:96
CHOPLIFTER (BS)
1 RS A:3 44:1 45:D 9.0 O:F 50:3
el orvensivmtsen A:FD 31:0 43:0 45:10 4F
46:12
2 O UOPR 45:8 46:D
AB... 4522
C-1E.5 STEP 5...... A5:8 10:04 51:1 DA
200 e, 45:6 D:0 4F:0

NOTE: Choplifter Serpentine David's Midnight Mag-
ic and Starblazer use track arcing are very sensitive
to drive speed. If you have problems try reversing
drives.

Another Choplifter hint: Just use a single drive for
copying. Error 5 on Track 1G.5 is OK.

The Best of Hardcore Computing Page 39

COLOSSAL CAVE ADVENTURE (FC)
0-22

COMPUTER AIR COMBAT (UNK)

D22 nemvassiniais E:DB F:D5 10:DE 8:1
COMPUTER AMBUSH (SSI)
D22 E:D4 10:B7 34:1 37:6E 38:FE
COMPUTER BASEBALL (SSI)
0-22... ..E:D4 10:B7 3411
COMPUTER MATH GAMES (AD)
......................... 10:AD A:3
1 D s i 10:0B
B2 e s rens 10:96

COMP. MODELS FOR MANAGEMENT (AW)
0-22

COMPUTER NAPOLEONICS (SSI)

0-22.. ...E:DB F:D5 10:DE 8:1

COMPUTER QUARTERBACK (SSI)

082 csmnimanising 34:1M 37:6E 3E:2 9:0 OE:D4
10:87

COMPUTER STOCKS & BONDS (UNK)
0-22

Alternative Method
0-22

APPLE SPOTLIGHT INSTANT ZOO (UNK)
0-22

CUBIT (MM)
L AN . 10:96 9:0 31:0 24:96

DARK CRYSTAL (SOL)
Use Copy Disk from main menu for all four disks.
SECTMOD DISK 1A: [T:5 S:F]

Change addresses A8-AA ALL TO EA
SECTMOD DISK 1A: [T:7 S:C]

Change addresses 22-24 ALL TO EA

DATESTONES OF RYN (EP)
022 i onsmenens s vurnon A:3 10:96

DAVID'S MIDNIGHT MAGIC (BS)

0. ... A3 44:1 454.D 9:0 O:F 50:3
. 44:0

44:1 31:0 43:0 45:8

10:F5 F:FD 51:1 4F:1 D:1

C-19 STEP.S..........
See note at Seawolf.

DAWN PATROL (TSR)
0-22.....................9:0 10:96

DUNGEON (TSR)
L R 10:96 9:0

EARLY GAMES (CPS)
Use Copy Disk from main menu.

EDUC. ACTIVITIES SOFTWARE (UNK)
0-22

EINSTEIN COMPILER (EIN)
Use COPY DISK from MAIN MENU,
SECTMOD [T:8 S:4]

Change addresses:
2A from BD to 4C
2B from 8C to E2
2C from CO to 91

ELECTRIC DUET (IN)
Use Copy Disk from main menu.

ELIMINATOR (ADA)
0-21

SECTMOD [T:3 S:0D] DOS 3.3 PATCHED
Change addresses:
2E from 20 to EA
2F from 30 to EA
30 from 72 to EA

ESCAPE (UNK)

CONGO (SS) DB MASTER (OLD) (SW) 0-22
0-22......couvenr D21 9:0 24:96 10:96 05... +10:96 24:96 D:1
6.5225... .00 ESCAPE FROM ALCATRAZ (SY)
COPTS AND ROBBERS (SR 1127 A 10-96 9:0 31:0 8:1
P ?.....,.......(,).,.10:958950 . DB MSTR UTILITY PAKS 1 & 2 (SW) A " &
15F5 ...D:1 24:96 A:3 E:DD F:AD 05 10:96 24:96 D:1 ESCAPE FROM RUNGISTAN (SRS)
10:DA 3B:40 65225D0 B2 s 10:96
322, 10:F7
DEADLINE iIcy e
PY][PLUS (CE
CS(;e rﬂélr[mal Dl:iﬁeg 2_‘)‘ 2.6 A 10:96 1E:BC Alternate method
; 0-21
DEMON'S FORGE (ART)
OUNTING E
"0_2‘5 FRAPEEE 0-22 EXECUTIVE BRIEFING SYSTEM (LTS)
E P I 022 s 9:0
COVETED MIRROR-SIDE 1-(PEN) :L_zs;fmp LA" '10%g§1.1 36:2A SECTMOD [T:21 S:0] DOS 3.3
0-22 STEP 2..........9:0 10:96 £E:D5 s ’ Change address 27 from FB to 22
1-17 STEP 2......... E:D4 Alternative method
19, 91 Same as Visifile EUX;:!CUTIVE SECH;EJQT; g%gF)
1821 STEP 2.0 DICTIONARY 2.1 (SOL) IR hd
COVETED MIRROR-SIDE 2-(PEN COPY DISK from MAIN MENU lternate metho
0-22 STEP 2..........9:0 10:96 E-([]5) SECTMOD [T:8 S:F] D-22. it e e 8:0 10:96 31:0 9:0
1-21 STEP 2......... E:D4 ?gatr;uic addresses: EXPEDITOR (SOL)
. The COV! IRR ide 2. e o e 10:96
HnBonk:Ths ESVETED MIROR a0 gl e 38 1F... 3B:1 A:14B:1 4D:8 50:1
CRANSTON MANOR (SOL) (Error 6 OK)
0-22 DISK ORGANIZER (SEN)
.| SR 38:1 A:1 4B:1 4D:8 5011 (ER- 0 E-Z DRAW 3.3 (SRS) Liraon 3o
ROR 6 OK) 1o 3821 AT 4B11 4D:8 50:1 (Er- 022.....rrrieiriinnes 9:0 E:D7 10:96 8:1 A:2 4:F3
ror 6 OK) 3A:3 D:1 24:96 31:0
CRIME WAVE (PEN) i A
0-10 step 2........... E:D5 F:AA 10:96 9:00 6:04 iBD FACEMAKER (SPN)
31:00 ;LI'RESJHse ggg\ﬂl f;?_ﬂsms 3.3 system master
1-11 step 2........... E:D4 F:AA 10:96 9:00 6:04 DISK RECOVERY (SEN se
ol g R it i) - Doesmmromseonsiion 34:01 36:2A 37:1B 38:FC
CRISIS MOUNTAIN (SY) Error 2 on Track 1 OK. May take several tries 3E:02
(050 e) 10:96 24:96 9:0 31:0 D'1 DLM SOFTWARE (DLM) Fﬁ‘\zszTGAMMON (@s)
0-22 -
A ' d
uﬁer"a“"“Me‘h" ik DRAGON FIRE (L10) FIREBIRD (GB)
322 9:0 3A:0 50:20 p-22 0-00.......oo... 10:96 9:0
"""" 15-B5.................D:1 24:96 A:3 E:DD F-AD
CROSSFIRE (SOL) DDUNG BEETLES (UNK) 10:DA 38:40
?B 3501 ,q1 451 4Da 501 (ER_ 1 A3 EFS FFB 10F7 FleT CLASS MA'L (CTS)
......................... 1 481 4D:8 50: 15 i
ity SECTMOD [T:0 S:1] DOS 3.2
CRUSH CRUMBLE AND CHOMP (AUT) Change addresses:
DTt 10:96 9:0 6D from 01 to 7B
6E from 61 to 69
The Best of Hardcore Computing Page 40

FLIGHT SIMULATOR (SL)

[} Mh————— 10:96

1.5-21 STEP 1.5.....E:DB F:AB 10:BF A:3 4E:1
78

95

FORMAT Il (KN)
COPY DISK from MAIN MENU

FORMAT Il (Version 7) (KN)
0220 i 10:96
SECTMOD [T:B 5:5] DOS 3.3
Change addresses:

04 from A9 to 4C
05 from 03 to 31
06 from BD to 68

FRAZZLE (MU)
0-22

GALACTIC ATTACK (SIR)
e 10:96 24:96 D:1

GALACTIC GLADIATORS (S5I)
B20: e sty 10:87 E:D7 9:0 31:0
P Eh S R 341

GAME SHOW (cm)
0-22...

GENERAL MANAGER (SOL)
Use COPY DISK from MAIN MENU for working
program and sample files.

Master program:

022 ievapinnnsinnins 9:0
Alternate Method
0-22........cccc0een. 10196

SECTMOD [T:1F S:0E] DOS 3.3
Change addresses:

C1to 48

C2to EO

C3to 49

SECTMOD [T:21 8:01) DOS 3.3
Change address 2E to 60

Alternate method for master program
COPY DISK from MAIN MENU
SECTMOD [T:0D S:0E] DOS 3.3
Change addresses:
2C from 60 to EA
SECTMOD [T:21 S:0B] DOS 3.3
Change addresses:

D7 from E3 to CB
SECTMOD [T:21 S:0E] DOS 3.3
Change addresses:
01 from 08 to 60

Method for version 2.0N
COPY DISK from MAIN MENU
SECTMOD [T:20 S:08] DOS 3.3
Change addresses:

09 from 20 to EA
OF from 20 to EA
10 from 00 to EA
11 from 70 to EA

Method for version 2.0Y

COPY DISK from MAIN MENU

SECTMOD [T:20 S:0B] DOS 3.3 PATCHED
Change addresses:

27 from 00 to EA

28 from 70 to EA

29 from 20 to EA

29 from 20 to EA

2A from OF to EA (Optional)

26 from 20 to EA (Optional)

GEOMETRY & MEASURE Vol 1 & 2 (UNK)

[A e el D:1 10:96 24:96
GERTRUDE'S PUZZLES (L.C)
£ 10:96 9:0
GLOBAL WAR (MU)
0-22
GOBBLER (SOL)
D22 nmnmnsivans !
% IS e v 3B:1 A:1 4B:1 4D:8 50:1 (Er-
rar 6 OK)
GOLD RUSH (SNT)
022......ccoeeenee . 001 900 24:96 10:96
GORGON (SRS)
05 oo bivanminigy 10:96 9:0
15E5 .., D:1 24:96 A:3 E:DD F:AD
10:0A 3B:40
GRAPHICS PROCESSING (SW)
Main Disk:
022, 19:0D 1A:AA

Utilities disk is not protected.

GRAPHTRIX (DAT)

0-22

GUADALCANAL CAMPAIGN (SSI)

022 nesiniiss E:D4 10:B7 34:1 37:6E 38:FE

HADRON (SRS)
0

3 JL I ey D12496A3EDDFAD
10:DA 3B:40

HELLFIRE WARRIOR (AUT)
0-22

HEART LAB (UNK)
0-22

HI-RES COMPUTER GOLF (AG)
0-22
{both sides)

Alternate Method
022 i 19:DF D:1 341

HI-RES COMPUTER GOLF VERSION 2 (AG)
Copy both sides.
D-22 ivivismiaiisns 10:96

HI-RES FOOTBALL (SOL)
0-22

HI-RES SECRETS (AG)
% T 10:96 4:FB 19:DF 1F:DF A1

Alternate method
0-22

HOME ACCOUNTANT (CTS)
022, v, 9:0 10:96

Alternate method
022 9:0

HOME ACCOUNTANT 2.0 {CTS)
0-22

HOME ACCOUNTANT 2.01 (CTS)
Use COPY DISK from MAIN MENU

HOME MONEY MINDER (CTS)

D8 onumummviveni 10:96 9:0
HYPERSPACE WARS (CTS)
B:22 s arasiin 9:0

INCREDIBLE JACK (BUS)
0-22
Write protect copy before using.

Alternate method

(i I 10:96 24.96

23 R D:1 9:0
INSTANT ZOO (UNK)

0:22 iviiinins D:1 10:96 24:96
INTERACTIVE FICTION (ADA)
0-22
INVASION ORION (AUT)

0-22
INVENTORY OF EQUIP. (UNK)
0-22
INVOICE FACTORY (ML)

0-22
JAW BREAKER (SOL)

D222, vesssessnsssaens

L SB1A14B1408501

{Error 6 OK)
JIGSAW (ML)
0

117 . iiveeniennen, D21 24:96 E:D3 F:96 10:F2
9:0 31:0
Alternate method
S 10:96 9:0 31:0
o I 10:96 9:0 31:0
19 E:D3 F:96 10:F2 9.0 31:0
KABUL SPY (SRS)
Side One:
0
7 IO 10:F7
22 i A:5 E:AA F:D5 10:D5 11:BD
12:8D

SECTMOD [T:0 S:0] DOS 3.3 PATCHED
Change addresses:
49 from 20 to EA
4A from 03 to EA
4B from 20 to EA

Side Two:

KEY PERFECT (MSP)
0-22

KNIGHTS OF DIAMONDS (SIR)
{bath sides)
DR 10:96 24:96 D1
Write protect disk before using.

Alternate method

Boot side:

0-22 000 vt D:1 10:96 24:96 34:01 37:00
Be sure to write-protect side one.

Scenario side:

A-22

(1 T D:1 10:96 24:96 4B:1

(Error 6 OK)
KNIGHTS OF THE DESERT (SSl)

022 svumann E:D4 10:B7
KNOW YOUR APPLE (MU)
0-22

The Best of Hardcore Computing Page 41

KRELL LOGO (new) (KL)
022 s
SECTMOD [T:2 S: 3}

Change addresses:
5B from DO to EA
5C from 03 to EA

Alternate method

0-22... ..10:96 9:0
SECTMOD [T 25 3]

Change addresses:

5B from DO to EA

5C from 03 to EA

LETTER PERFECT (LJK)
(455 £ 10:96 9:0

LIST HANDLER AND UTILITY (SVS)
{older version)

1-11

' S 9:0 A:3 44:1 45D 50:3

12-22.5 step 5.....D:1 E:F§ F:D7 10:F7 45:8
46:D 51:1

See note for Seafox.

LIST HANDLER Version 1.1 (SVS)
PROGRAM DISK

111
0oieiieieeeinennnnn. 9:0 A3 4401 45:D 50:3
12-19.5 step .5......E:D7 F:D7 10:DD 45:8 46:0
T
20-22.5 step .5......E:0 F:FD 10:04
UTILITY DISK
1-11
e e 9:0 A:3 44:1 45D 50:3
12-225.................0:1 E:D2 F:D7 10:DF 45:8
46:D 51:1
LJK EDIT 6502 (LJK)
0-22.ciiiiiiiieinnnnnn 10:96 9:0

MAGIC WINDOW | AND Il (ART)
0-22

Alternate method

028 sy 10:96 24:96 D:1
MAGIC WINDOW Il (ART)
023 (Error 2 on track 23 OK. Try

3C:4 if problems.)
MAGICALC (ART)

DB E v 9:0
MAGIC MAILER (UNK)
0-22
MAGIC WINDOW | & Il (ART)
0-22
MAILING LIST (UNK)
0-22
MARAUDER (SOL)
B oo 10:96 9:0

Sectmod [T:3 5:7] DOS 3.3
Change address 90 from A8 to 60

MARS CARS (DM)

e 10:96
MASK OF THE SUN (ULS)
Sides A and B

022, cvivamdg 10:96
Side A

SECTMOD [T:2 5:0D] DOS 3.3 PATCHED
Change address 42 from 8F to EA
Change address 43 from CO to EA

Do not write protect backup

MASTER TYPE (new) (LNS})
0522z i 9:0 37:FF 34:1 38:BF 35:EB
39:EB 36:AB 10:96

MASTER TYPE (old) (LNS)

0-2

F-22 i E:D4 (ERROR on track 1B
okay)

SECTMOD [T:0 S:3] DOS 3.2 PATGHED

Change address 63 from 38 to 18

SECTMOD [T:2 S:A] DOS 3.2 PATCHED

Change address 2E from 23 fo 2E

MATH STRATEGY (AC)

| — 10:96 24:96 D:1
MECC (Vol. 1 & 2) (CW)

0-22

. e 10:96 9:0
MECC (Vol. 3 4 and & 7) (CW)

[- SO 1] i |

MEGAWRITER (MH)
Use COPY from MAIN MENU.

METEOR MULTIPLICATION (DLM)
0-22

MICROBE (SY)

Q2R T 10:96 9:0 310
Alternate method

0-22.......cceevrennnn.. 10096 24:96 9:0 31:0 D1
MICRO COOKBOOK (VC)

0-22
MICRO DEUTSCH (KL}

022 cnmpmnsiian

Error 2 on Track 1B |s OK

MICRO SKILLS (EU)

0

1522 i 10:96 19:AA 1C:A 31:00
SECTMOD [T:0 S:3] DOS 3.3 PATCHED
Change address 42 from 38 fo 18

MICROSOFT ADVENTURE (MIS)

0-22

MICRO WAVE (CC)

0-22

5 . 3B:1 A:1 4B:1 4D:8 50:1
Alternate Method

0:22 . cosaannsnmnss 10:96

SECTMOD (T:2 S:1] DOS 3.3
Change addresses:
DA from A9 to AD
DB from 60 to 03
DC from 80 to 81
DD from 7E to 60

Alternate Method

0-22
MILLIKEN SERIES (ML)
0-22
MINER 2049°ER (MF)
[rrer oottt 4B:1 10:96
122 seisumssarosnmasd 4B:0 E:D3 F:96 10:F2 A:3 9:0

31:0 8:1 D:1 24:96 6:6

Alternate method

s S E:D3 F:96 10:F2 A:3 9:0 31:0
8:1 D:1 24:96 6:6 1C:96
1D:D3 1E:E5 19:D3

422, 480

MINIT MAN (PEN)
0-22 STEP 2..........10:96 9:0
1-21 STEP 2..........E:D4

MISSILE DEFENSE (SOL)

D22 ceanniniii D:1
MISSING RING (DM)
i D:1 24:96 10:96 34:1

Do not write protect!

MISSION: ASTEROID (SOL)
0-22
Alternate method
0-22........ccceveee.. 10:96 24:96 D:1
MISSION: ESCAPE (MSP)
0-10
MIX AND MATCH (AC)
Use COPY DISK from MAIN MENU.

Alternate Method
0-22.cvivieniinnenan 300 10:96

MONEY STREET AND UTILITIES (BES)
Q22 s Errors OK

MOUSKATTACK (SOL)
022 10:9

SECTMOD [T:18 S:03]

Change address B1 from 49 to 60

MULTI-DISK CATALOG (SEN)

08

8. ucusssnmmsresmnssnns A:1 E:AF 38:1 4B:1 4D:8 50:1
MULTIPLAN (MIS)

BDD .o vesssnsinsonss

MURDERS BY THE DOZEN (CBS)
Use COPY DISK from MAIN MENU.

MUSIC MAKER (SS)

0-22
MYSTERY HOUSE (SOL)
0-22
NUETRONS (L10)
0-22..ovorernernr o A3 10:96
NIBBLES AWAY | (MWD)
0-22
NIBBLES AWAY Il VERSION C2 (MWD)
O, 10:96
T E:D7 10:97
10-15
NIBBLES AWAY Il VERSION C3 (MWD)
0B eitss, E:D7 F:AA 10:97

{Error 2 on Track OF OK)

NIGHTMARE ALLEY (SY)
022 oo 10:96 9:0 34:1 31:0

NORTH ATLANTIC '86 (SSI)
0-22.........co.0o.r.....E:D4 10:B7 34:1 37:60

OLYMPIC DECATHALON (MIS)
0522 iy 9:0

Alternate method
022

00-TOPOS (SNT)
0-22

OPERATION APOCALYPSE (SSl)
22 st E:DB F:D5 10:DE 8:1

The Best of Hardcore Computing Page 42

ORBITRON (SRS}
0-1

15F.5
{(Write protect copy!)

OUTPOST (SRS)

[10:96

VEBS ot D:1 24:96 A:3 E:DD F:AD
10:DA 3B:40

PARTS OF A MICROSCOPE (UNK)
0-22

PEEPING TOM (ML)

0

e E:F5 F:AB 10:BE 9:0
4-22

SECTMOQD [T:0 S:1] DOS 3.2

Change address 6E fram 60 to 68

PEGASUS Il (SOL)

0-22
T 3B:1 A1 4B:1 4D:8 50:1 (Er-
ror 6 QKAY)
PERSONAL FINANCE MANAGER (AC)
022, 10.96
PERSONAL SECRETARY (SFS)
0-22.......cc0e....... 10:96 9:0

PFS FILE & PFS REPORT (SPC)
COPY DISK from main menu.
Write protect copy!

PFS GRAPH //e (SPC)
Same as PFS File & PFS Report

PHANTOMS FIVE (SRS)
2B s 3A:0 50:20

PIK (APPLE /// BOOT PROGRAM) (AC)
Use COPY DISK from main menu

PINBALL (A2-PB1) (SL)
S e 10:96
3 £ L T ...A:3 E:DB F:AB 10:BF 44:1
45:0 46:F 30:3 D:1

PINBALL CONSTRUCTION (BC)
Use COPY DISK from main menu

POOL 1.5 (IDSI)

0-15

1E-21

SECTMOD [T:0B S:7] DOS 3.2 PATCHED
Change address 6A from 8D to 60
SECTMOD [T:0 §:3] DOS 3.2 PATCHED
Change address 63 from 38 to 18

POWER TEXT (BP)
Use COPY DISK from MAIN MENU.

PRESDENT ELECT (SSl)

1 S E:D4 10:87 34:1
PRISM (MAG)

0-22
PRISONER | & Il (EW)

008 e 10:96

SECTMOD [T:1F S:0E] DOS 3.3
Change addresses:
D5 from AD to 2F
D6 from 99 to AF
D7 from FO to 32

PRO FOOTBALL (SDL)
0-22

LE PROPIO (LOD)
B e 10:96

PULSAR II (SRS)

0

16.5-1D5..............DA
26 e DD,
13-18

1A.56-18.5

PSAT WORD ATTACK SKILLS (EW)
0-22

QUEST (PEN)
0-22.....ooceenrr. B0 F:AA 6:4 9:0 10:96 31:0

Alternate method

Side 1

0-22 Step 2...........10:96 19:DA 1F:DA 3C:1
1-21 Step 2...........E:D4

Side 2

0-22

QUICK FILE (AC)
0-22
RASTER BLASTER (BC)
10:96
5-11 STEP 4..........D:1 9:0 31:0 A:2 E:AD F:DE
3B:40
6-12 STEP 4
7.5F.5 STEP4
15-3.5 STEP2

READABILITY INDEX (UNK)

REPTON (SRS)
. E:FD F:DA 10:DD
SECTMOD [T:00 S:00] DOS 3.3
Change addresses:
8C from 4G to A9
8D from 80 to 4C
8E from BA to 8D
8F from 00 to 18
90 from 00 to BB
91 from 00 to A9
92 from 00 to 1B
93 from 00 to 8D
94 from 00 to 19
95 from 00 to BB
96 from 00 to A9
97 from 00 to BB
98 from 00 to 8D
99 from 00 to 1A
9A from 00 to BB
9B from 00 to 4C
9C from 00 to 80
9D from 00 to BA

RENDEZVOUS (EW)
BRY o 10:96 9:0

Alternative Method
0-22. iz 10:96 24:96 D:1 2:0 31:0

023 10:96 9:0 24:96

RESCUE AT RIGEL (EP)
(15— A:3 10:96

RICOCHET (EP)
oA 10:96 9:0 8:1

ROACH HOTEL (ML)
0
lassmannrnsany A:3 E:EE F:EA 10:FE
4-22
SECTMOD [T:0 S:1] DOS 3.2 PATCHED
Change addresses:
75 from 01 to 7B
76 from 61 to 69

ROBOT WARS (MU)

e vimnanmmnanis D:1.31:0
ROCKY'S BOOTS (LC)
O-28ommmmans 10:96 9:0

SABOTAGE (SOL)

A R 3B:1 A:1 48:1 4D:8 50:1
{Error 6 OK)
SARGON (HN)
0-1A. s 10:F7
SCHEDULE OF EQUIP. (UNK)
0-22

SCREENWRITER Il (SOL)
Use GOPY DISK from MAIN MENU.
SECTMOD [T:3 S:B] DOS 3.3
Change adressess:

94 from 20 to EA
95 from 00 to EA
96 from 7F to EA
SECTMOD [T:13 S:4] DOS 3.3
Change addresses:
4D from 20 to EA
4E from 00 to EA
4F from 60 to EA

SEA DRAGON (UNK)

0-22
Alternative method

0522 s cusisismn s 10:96 24:96 D1
SEAFOX (BS)

Dirsmmimmssaian A:3 44:1 45:D 9:0 0:F 50:3
Telmnnsinm 4:FD 31:0 43:0 45:10 4F:1
46:12

B 45:8 46:D

T T L 45:2

C-1E.5 step .5........ 45:8 10:D04 51:1 DA
Py 45:6 D:0 4F:0

NOTE: Seafox, Spider Raid, Choplifter, Serpentine,
David's Midnight Magic and Star Blazer use track
arcing and are very sensitive to drive speed. If you
have problems try reversing drives.

SENSIBLE SPELLER (old) (SEN)

(12 [TN e O 1096 9:0

Alternative method
[LA o 10:96 9:0 3B:40
e o o 4B8:1 A:2 50:2 E:D4 F:D4 3B:1

Note:Carefully adjust the duplicate drive speed when
copying tracks 1 to match nibble count on the origi-
nal disk and ignore errors.

Alternative method

Note:Errors 2 on track 1 may be OK. Very sensitive
to drive speed. Retry track 1 several times if
necessary,

SERPENTINE (BS)
Same as Seafox

Alternative method
Same as Seafox but copy tracks 20-22 on last set
of parameters.

The Best of Hardcore Computing Page 43

SHERWOOD FOREST (PH)
0-22

Alternative method
Use COPY DISK from MAIN MENU until copy
process hangs. Then bit copy tracks 1F-22.

SNACK ATTACK (old version) (DM)
0-12

SECTMOD [T:0 5:3] DOS 3.2 PATCHED
Change address 63 from 38 to 18

SNACK ATTACK (DM)

0-12

SECTMOD [T:1 5:3] DOS 3.2 PATCHED
Change address 39 from 38 to 18

SNEAKERS (SRS)

o 9:0 10:96 44:1 45:10 D:1

52 i AR . L |

D5

Alternative method

1R) 9:0 10:96 44:1 45:10

5 44:0 (Error 1 on Track A OK)

Dbvaremmm 44:1

SNOGGLE (BS)

09, 9:0 8:1

SOFTPORN ADVENTURE (SOL)

1 - 1 ||

Joi 3821 A1 4B:1 4D:8 5001 (Er-
ror 6 OK)

SPACE EGGS (SRS)

¢ [i 9:0

26

11-1A

SPACE INVADERS (UNK)

0-22....................10:96

SPACE VIKINGS (SL)

Alternate Method

022 . ovnsns 10:96 21:DA 8:1 A:3
SPECTRE (DM)

e Y e 10:96 9:0 8:1

322, 31:0 E:C5 10:B5
SPEED READER (AC)

£ . 9:0 10:96
SPELLING STRATEGY (AC)

022 vmibinag 10:96 24:96 D:1

SPIDER RAID (IN)
0

2 Fo L A A:3 E:92 F:93 4F:1 10:95 44:1
46:A 9:0 8:1 D:1 24:96 3F:1
34:1 36:2A 37:97 31:0 43:0

1.5-175................E:95 10:92

Works only for new versions.

See note for Seafox.

SPITFIRE SIMULATOR (MS)

0-F

15
SPY'S DEMISE (PEN)

1-11 step 2........... 9:0 10:96 E:D4

0-12 step 2........... 6:4 31:0 (ERROR 2 on track

12 okay)

Alternate method
0-10 STEP 2.......... 9:0 10:96
1-11.8TEP 2.0 E:D4

Alternate method

0-12 STEP 2..........6:4 31:0 E:D5
STARBLASTER (PIC)

Dt svsinsissosgension 10:96 9:0

7-20 STEP 1.5.......E:DF F;AD 10:DE

STARBLAZER (BS)
Same as Sea fox

STARCROSS (IC)

V7% S (1 1.
STARSHIP COMMANDER (VOY)
022w D:1 10:96 24:96

STATE OF THE ART ACCOUNTING (SAA)
0228 st 3C:4
Write protect copy!

STELLAR INVADERS (AC)
0-22

STEP BY STEP | & Il (PDI)

0-22

STERLING SWIFT PRODUCTS (SSP)
0-22

STOCK PORTFOLIO SYSTEM (SMI)
3-22

02, 4:FD 8:1 10:AD
Alternate method
3-22
02 i 4:FD 8:1 10:96
STOCK AND BONDS (AVH)
0-22
STORE MANAGER (HT)
0-22
STRIP POKER (ARW)
0-22
SUPER GRADEBOOK (HOB)
0:22 cniseimsmn 10:96
SUPER GRAPHISME /// (LOD)
L e e 10:96
SUPER PILOT (AC)
L ——— 10:96
2-22

SECTMOD [T:0 5:A] DOS 3.3 PATCHED
Change addresses:
79 from 43 to EA
7A from 41 to EA
7B from C6 to EA

SUPER PILOT (AC)
[10:96 24:96 D:1
(MAIN DISK ONLY)
Use COPY DISK for lesson and Super Co-Pilot

SUPER TAXMAN Il (HAL)
0-22
Write protect copy!

Alternate method
BB T 10:96 24:96 D:1

SUPER TEXT (MU)
0-22.....ccoiennn, D1 310

SUPER TEXT 40/80 (MU)
D8R, ey 9:0

SUPER SCRIBE Il (UNK)
U R 10:96
. ...3B:1 A:1 4D:8 5D:1 (Error 6
0K)

1F ... 3821 A1 40D:8 5D:1 (Error 6
0K)

SUSPENDED (IC)

0-22..cviiiineinnnn, 10:96 1E:BC

Alternate method
Use COPY DISK from MAIN MENU.
Write protect before using.

SWASHBUCKLER (DM)
0-22
SECTMOD [T:0 5:3] DOS 3.3 PATCHED
Change address 42 from 38 to 18

Alternate method
0-22..........oco.n D21 10:96 24:96

Alternate method
0-22

TAWALA’S LAST REDOUBT (BS)
e

TAX MAN (HAL)
0-22

Alternate method

Alternate method
0

TAX MANAGER (ML)
Use COPY DISK from MAIN MENU

TAX PREPARER (HOW)
Use COPY DISK from MAIN MENU

Alternate method

0-22
TEMPLE OF APSHAI (EP)
022 vrninanas, A:3 10:96

Alternate method
0220, A:3 10:0B

TERRAPIN LOGO (TER)
Format Target Disk

L 10:96

Write protect backup before using.

TEST CONSTRUCTION (HOB)

022, 10:96
THREE MILE ISLAND (MU)
0-22
THRESHOLD (SOL)
0-22
1-23 STEP 22........ 3B:1 A:1 4B:1 4D:8 50:1 (ER-
ROR 6 OK)
THUNDERBOMBS (PEN)
0-10 step 2...........E:D5 F:AA 10:96 9:00 6:04
31:00
1-11 step 2...........E:D4 F:AA 10:96 9:00 6:04
31:00
TIME MANAGER (ICP)
0-22

The Best of Hardcore Computing

Page 44

TIME ZONE (SOL)
{Disks B thru L)
Use COPY DISK from MAIN MENU.

(Disk A)
D-22 v criviminizaiis 9:0
1eoiienenn. 3831 A1 4B21 4D:8 50:1

TORPEDO FIRE (SSl)
See three Alternates for Warp Factor

Alternate Method

[T IR e E:D4 10:B7 34:1
TRANSEND | (SSM)
155 RN — Error on Track 23 OK.
Alternate Method
0-22...........cc 10096
TRANSLYVANIA (PEN)
0:22....oesoeeentls E:0 10:96
Alternate Method
0-22 step 2........... 10:96 9:0
1-21 step 2...........E:D4
TUBE WAY (DM)
0-22
TWERPS (SRS)
Uosoiamaniianiig 9:0 10:96
EBEDY . covvontmnsn D:1 24:96 A:3 E:DD 10:DA
3B:40
TYPE ATTACK (SRS)
Osonuanaiasang 10:96
S - - E:AD F:DA 10:DD 24:96 A:3
DA

TYPING TUTOR (MIS)
Copy disk from main menu

U-BOAT COMMAND (SY)
Q22 covminvaiavinis 10:96 9:0 31:0 D:0 24:96 (Ig-
nore Errors)

U-DRAW II (MU)
LI TN D:1 310

ULTIMA 1l (SOL)

Use COPY DISK then

SECTMOD (T:3 S:0C)

CHANGE ADDRESSES 84 85 86 ALL TO EA.

Alternate Method

022 vy 10:96 9:0 34:1 31:0
Alternate method
0-23
ULTIMA /// (OS)
0230 9:0A:3 44:1 50:3 3B:1 A:1
D:1 10:96 50:1
ULYSSES & GOLDEN FLEECE (SOL)
D20, s 9:0
Qi 3B:1 DA:1 4B:1 4D:8 50:1
{(ERROR 6 OKAY)

Alternate Method

Use COPY DISK from main menu

s e 3B:1 0A:1 4B:1 4D:8 501
(ERROR 6 OKAY)

V.C. (AVH)
0-22

VERSA FORM (AST)
0-22

VISICALC (VCP)
0-16

Alternate Method
0-15

Alternate Method
0-16....ccocinnninn A3

VISICALC Il ENHANCED VERSION (VCP)
(15 [PO e Error 2 on Track 1 OK.

VISICALC /fe 128K VERSION (VCP)
0-22.....................10:96 24:96 D:1
9:0 31:0

VISICALC PRE-BOOT (VX)
[SR 1 L

Alternate method
0-23....................10:96 9:0 3FA

VISICALC FOR THE APPLE /// (VCP)
0-22..ovrrereerenn.. 10:96 24:96 DA

VISISCHEDULE /// (VCP)
Copy disk from main menu.

VISIDEX, VISISCHEDULE, VISITERM,
YISITREND/VISIPLOT (VCP)

Don't use Bit Copy. Use COPY DISK from MAIN
MENU.

VISIFILE (VCP)

0-22........ccceee.... 10:96 34:1 36:2A 37:EB 3E:2
WARP FACTOR (SSI)

0-22
Alternate Method

(150 e e E:DB F:D5 10:DE
Alternate Method

0

122....................E:DB F:D5 10:DE 8:1
Alternate method

0-22

P 9:0
WILDERNESS CAMPAIGN (SY)

0-22
WINDFALL (EW)

s WL P 10:96
WITNESS (IC)

0:22 .o vovvinanies 10:96 1E:BC
WIZARD & PRINCESS (SOL)

0-22
WIZARDRY (SIR)

Boot Side:

ek R e vl L e 10:96 24:96 DA

Write protect back-up before using.
Scenario:

Q22 10:96 24:96 D1

Alternate for Boot Side

Use Copy Disk then

Tt S A ——— 10:96 24:96 D:1 4B:1
Write protect copy before using.

Alternate for Scenario Side
R e 10:96 24:96 D:1 4B:1
DO NOT write protect.

Alternate for both sides

Use COPY DISK from MAIN MENU then Bit Copy.
O:imsanna D:1 10:96 24:96

1 R 4B:1 (Error 6 0K)

Be sure to write-protect boot side.

Alternate for both sides

[V SR L
OF-22
P e D:1 4B:1 10:96 24:96

If Error 6 then recopy that track.
WIZ PLUS (DM)

0-22........ccceeenn. 10096 24:96 D:1
WIZ MAKER (ARS)
0-22......ccceennnn D11 24:96 10:96 34:1 8:1
WORLD HANDLER (SVS)

0-22

WORLD'S GREATEST BLACKJACK PRO-
GRAM (AC)

0-22

WRITE AWAY (MWS)

Use Copy Disk

ZARDAX (CW)

D22 0:12 10:96 24:96
ZARGS (IN)

Same as Spider Raid

ZAXXON (DS)

1-12

0. viiiiiiiiieeeenn 4821 9:0 (ERRORS OK)
Alternate method

033 4B:1 D:1 10:96 24:96

17 N e S 4B:1 9:0 10:96 24:96 19:CC
3C:1 (Error 1 OK)

Alternate method

B I A 10:96
Qs ..4B:1 (Errors OK)
13
Alternate method

0-13

SECTMOD [T:0 S:07]DOS 3.3 PATCHED
CHANGE ADDRESSES 00-02 TO 4C CO 08.

Alternate method

3-12
0-2.cicivvsininani 4B:1 9:0 10:96 24:96 19:CC
3C:1
ZOOM GRAPHICS (PHO)
1 Lo TR] 10:96 9:0
Alternate method
(1 10:24 8:0
Alternate method
Oisimnmmnpmisan 10:96
2-22 step 2..........9:0 8:1 3E:2
1-21 step 2...........E:D4
ZORK | Il Il {IC)
0:22ccimvamnnmigg 10:96 1E:BC
Alternate Method
0-22
Alternate Method for Zork Il
023, 10:96 9.0 3F:1

The Best of Hardcore Computing Page 45

Curing Those Ruto-Start ROM Blues

Hardware Solutions

Many readers complained that they
couldn’t use the softkeys because they
didn’t have the Integer Firmware card. Well,
here’s one solution...

The auto-start ROM is a mixed blessing.
The auto-start feature allows programmers
to create a Turnkey System.

The user need only insert a program disk
and switch on the computer. The monitor
ROM will automatically cause the disk to
BOOT and the program will be up and run-
ning. The reset switch can be locked out.
An unknowledgeable user cannot acciden-
tally crash the program.

This is great for computer users who
have no need or desire to learn about com-
puters. But, for the hobby or business per-
son whao is trying to modify lines or fix a bug
in a program, the auto-start ROM will make
life miserable. It is all but impossible to stop
a running program.

One solution is to not buy software that
cannot be modified. Another solution is to
purchase an Integer Firmware card. (The
old F-8 monitor ROM does not have the
auto-start feature) The price for this can
range from $100 to $200, depending on
whether it is purchased new or used.

A less expensive solution is to purchase
just the F-8 monitor ROM for an Apple Il
from an Apple dealer and replace the
autostart ROM in the Apple Il + whenever
program modifications are needed.

The procedure is simple. Care should be
exercised, however, because the pins on
the Integrated Circuit (IC) are easily bent.
Read all of the following instructions
thoroughly before beginning.

CAUTION: This procedure may void any
dealer warranties!

1. Turn off the power to the computer.
Remove the cord.

2. Remove the top cover and set it aside.

3. Touch the metal power supply case
to discharge any static from your body.
(The power supply is the large box on the
left side.) Do this again before you handle
the ROM.

4, Locate the F-8 ROM (see fig. 2). Using
a small, flat screwdriver, gently pry up one
side of the IC about 1/16th of an inch.

5. Gently pry up on the other end of the
IC about 1/16th of an inch.

CAUTION: Be sure to pry up on the IC
chip and not on the socket. (see fig. 1)

6. Repeat steps 4 and 5 until the IC is
free.

7. Set the chip aside in a safe place. (If
the F-8 ROM you bought comes with a
case, use that.)

REMEMBER: Static Is your worst ene-
my! Handle the chip as little as possible.

8. Pick up the chip you purchased and
examine it. One end will have a notch and
a small dot near one corner. The chip must
be inserted with the notch and small dot
pointing toward the keyboard.

CAUTION: Applying power with the
chip in the socket backwards may des-
troy the chip and damage other compo-
nents on the motherboard.

9. Insert the chip in the socket. You can
prealign the pins on the chip by pressing
them upon a flat surface. Be gentle and use
even pressure. Insure that the chip is fully
seated in its socket.

10. Replace the top cover and reconnect
the powsr cord.

11. Turn on the computer. Your Apple
Il + will now emulate an Apple |l cold start.
When you see the asterisk prompt, type:

6 ctrl P return

To enter this line, press the "6 key.
Then while holding the ““CTRL” key down,
press the “P" key. Then press the

“RETURN’ key. This will BOOT a disk in
slot 6.

Follow these same steps when you wish
to re-install the auto-start ROM. 0

Figure 1

figure 2

Your Apple Motherboard showing the
+ the RON to replace.

' Ueps
FRRAL ___HTMRREE
sl JREREEIIL
e ,
(JHRRRNRRRIRUEED
i
JURIRTIRRIRNLD
Ilﬂlllllllﬁlllf
; 1
IR0 RRRRNRERIT
= 1
11 mmBEiINL].

s b D | B
s
@D

Locksmith Parameters continued from page 30

Alternate method
s 00-09

WIZARDRY #2 (Knight of Diamonds) (SIR)
s 00-09 BY 1
s OF-22 BY 1
s OA-DE BY 1..........36=01
Uses nibble count.
Write protect before running.

WORD HANDLER (SVS)

00...vvveveeoorerrcrenen 46=96 54=12
11-22
HAE.....roccconesbs 44=FF 45=DF 46=DE

NB type 8 errors 0.K.
WORD HANDLER Il (SVS)

00 cyvmsse g 46=96 54=12 53=00
11-22
SHET 44=FF 45=DF 46=DE

For type 8 error, recopy track until good.

ZORK (IC)
0022 i 1E=0B
- ARG o 5 3- 4C=1B 57=00 E9=02
NB uses nibble count.
ZORK 1 {IC)
00-22.....cccceviinnn 46=96 40=14
ZORK I {IC)
00:22....... oo 46=96 40=14

The Best of Hardcore Computing Page 46

A MENU Hello Program

Requirements:

APPLE Il with 48K
DOS 3.3
Applesoft in ROM

MENU HELLO is a user-oriented pro-
gram easily modified for individual needs.
A menu HELLO program makes ‘“‘turn-
key'' operation possible by providing a
quick, simple and user-friendly way to
LOAD, RUN, BLOAD or BRUN programs
on a disk.

WARNING: MENU has a problem read-
ing inverse or flashing files. MENU will print
garbage for the file name and will generate
errors if anything is done to that file by the
Mini-Menu. MENU will only work properly
on a normal catalog (one that prints only the
unmodified catalog header and the file
names in a normal fashion). A catalog wilf
not be read properly by MENU if the cala-
log routine prints either how much space
is left or that the disk is okay.

Most users have probably written a menu
program of some sort, such as:

10 PRINT *“1) SUPERCOPY 1.0”

20 PRINT *2) FILE FIXER"

30 PRINT: INPUT “'SELECT ONE *‘; A$
40 PRINT CHR$(4) “RUN™ A§

This is great for a few programs on
selected diskettes, but writing a new menu
program for each disk can be tiring at best
and probably not worth the effort.

MENU is a more advanced type of menu
program that allows the user to do a multi-
tude of things with the directory (where
DOS stores all the information printed
when a CATALOG is done), from loading
a program to locking or unlocking some or
all of the programs on a disk.

Enter the listing for MENU in the order
explained in “How To Enter MENU."” Save
the program. If MENU is used for the HEL-
LO program, be sure that it is the one that
runs first when the disk is booted. Do this
by saving MENU under whatever file name
is run when the disk boots or by initializ-
ing new disks so MENU is the HELLO pro-
gram. This can be done by simply typing
INIT MENU, followed by a V and the
volume number desired (1 - 254),

Now run it. READING CATALOG will be
visible in the center of the screen. At this
time MENU is reading the catalog. After a
few seconds the first part (page) of the

By Robb Canfield

catalog will be seen.

To page through it (when there are a lot
of files in the catalog), use the left and right
arrow keys.

To select a program, just type iis letter
code. This will cause the Mini-Menu to be
entered. The Mini-Menu is self-prompting
(it asks all the questions) and simple to use.

The only confusing part that may arise
is when a binary file is run or loaded. The
Mini-Menu will ask for the running or load-
ing location. This is an optional choice. To
load or run the binary file at other than the
original address, enter the new address.
Press return to use the original address.

Remember: Always precede a hex
location with a "'$”.

It is possible to delete, rename, unlock,
lock, load (bload), run (brun} a program and
exec a file (depending on its type) using the
Mini-Menu. The Mini-Menu also automati-
cally updates the options for the user. This
is done so that a locked file is not locked
again and a text file isn't run or loaded.
There is even an lock/unlock all mode that
will lock or unlock every file on a disk.
Whenever a file is selected, all valid com-
mands are displayed along with their ex-
planations. All commands are normal keys.
No control characters are used in the
Mini-Menu.

When a catalog is displayed, the file
names and their status codes are shown.
This is a typical example:

*A 089 SUPER INVADERS

The following is an explanation of the
various parts of the file status code preced-
ing the actual file name (SUPER
INVADERY):

*. The asterisk means the file is locked.
If the file were unlocked this would be a
space.

A - The 'A’ tells DOS that the program
is in Applesoft. ‘I' means Integer, ‘B’ me-
ans binary, and ‘T’ means text file.

089 - Thase three numbers represent the
length of the program or text file in sectors.
This number will always be three digits.

The status section of the file takes up
seven characters. The file name takes up
30 characters (DOS always reserves 30
characters for the file name. All characters
after the actual file name are spaces and
printed as such.) DOS also prints a carri-
age return after it finishes printing the file
name, so the following file name is put on

the next line down.

The machine language portion of MENU
fools DOS into putting the file name and
its status into the string array (NA$) instead
of on the screen. Everything that is normal-
ly printed on the screen is put into the ar-
ray instead, including the catalog header.
The information can then be used as
desired.

How to enter MENU

MENU consists of two parts:

1. A machine language listing

2. A BASIC listing

The machine language routine must be
entered from the monitor (*) before the
BASIC listing is typed.

First of all, make sure that the Applesoft
pointers are set correctly by typing:

FP
and pressing return

Then enter the monitor by typing:

CALL -151
and pressing return.

Now type the following lines: (Don’t for-
get to press return after each line.)

0800:00 37 08 00 00 B2 A9 28
0808:8D 53 AA A9 08 8D 54 AA
0810:A8 36 8D 55 AA A9 08 8D
0818:56 AA A0 08 B1 6B 8D 2C
0820:08 C8 B1 6B 8D 2D 08 60
0828:29 7F 8D FF FF EE 2C 08
0830:D0 03 EE 2D 08 60 00 00
0838:00 00

Figure 1 -

While still in the monitor, set the end-of-
program counter to point to location $0839
by typing:

AF:39 08

Now type:

800.839

The figures on the screen are what is
called a hex dump. Compare it with the one
shown in Figure 1. If any line is not the
same, reenter that entire line. After the cor-
rections are completed, return to Applesoft
by typing:

3D0G

(Or, for those with the Autostart ROM,
just press reset.)

Line 0 should be the only line of the pro-
gram at this time. The machine language
subroutine is hidden behind the REM state-
ment and will not be affected by RENUM-
BER or line changes if it is the first line in
the program.

The Best of Hardcore Computing Page 47

Now, enter the BASIC listing as shown,
and save it to the disk. There is no need
to type the REMs in the BASIC listing, but
it may help when modifying the program
later.

Caution; Do NOT under any conditions
delete or modify line 0. Any change to line
0 will cause MENU fo run incorrectly.

A Line-by-line Explanation

Here is a line-by-line description of
MENU. The subtitles are the same as the
ones used in the listing itself. Line numbers
precede their explanations.

0: The machine language part of MENU
is hidden within the REM statement on line
0. (see ‘‘How to enter MENU"').

Initialize string storage (10-50)

10: First, reserve memory for 104 file
names and the catalog header (NAS).

20: Each element of NA$ must be set to
38 characters. This is done by creating a
string (HE$) consisting of 40 ** = 's and run-
ning through a loop that sets each element
of NA$ to the first 38 characters of HE$ (us-
ing LEFT$), except for NA$(0) which is the
catalog header and, as such, only needs
19 characters.

30: The loop runs backward so that the
NAS(0) is the first element filled when a
catalog is done.

32-33: Get the amount of memory avail-
able in the machine (48K or 32K) by check-
ing location 984 (dec). This value is then
POKEGd into the machine subroutine hidden
in line 0.

40: Set enough room aside for the cata-
log header.

Reread catalog (55-220)

55-200: CALL the machine subroutine
and read the catalog into memory. This is
the hard reentry point. Going to this line will
cause all information about the current
catalog to be deleted and a new one read.

206-220: Find the last page of the cata-
log. This page minus one is stored in the
variable MA.

Print file names (230-310)

230, 240: Clear window and print the
catalog header. Line 230 is is also known
as the SOFT entry point.

250: Print the boundary (HE$).

270: Control the wrap-around feature.

320-370: Look for a blank file name (all
“="'g). If it is blank, then get a file selec-
tion. Otherwise, continue printing file
names until both columns are filled.

Get file selection (440-550)

440-460: Set text window and print page
number and other information.

470: Get a file selection and check if
user:

475, 480: page through the catalog.

500: help.

510: exit the menu.

520: read another catalog. If a file selec-
tion was entered, make sure that the file
exists.

530: If it doesn't, ignore this selection
and get another.

550: Otherwise, go to the Mini-Menu.

The mini-Menu

The Mini-Menu is divided into 12 main
routines.

. Initialize Defaults
. Center Printing

. UNLOCK File
LOCK File

. RUN/BRUN File

. DOS Control

. LOAD/BLOAD File
. DELETE File

. RENAME File

10. LOCK/UNLOCK all
11. Exit Mini-Menu
12. EXEC Text File

NOTE: The word ‘‘flag” (which appears
below) is used to denote a variable whose
value will cause certain actions to be taken.
The flags are:

B is the Binary/ Text flag.

B = 0 Applesoft or Integer file.
B = 1 Binary file.
B = 2 Text file.
L is the Lock/Unlock flag.
L = 0 Unlocked.
L = 1 Locked.

Initialize defaults (560-650)

560,565: Print MINI-MENU, then set A$
equal to the proper file name and print it.

570: Set default options (LOCK, LOAD,
RUN).

575: If the first character of A$ is an
asterisk (*), change the lock option to un-
lock and set the lock flag (L = 1).

580: Use the second character of AS to
set the file type flag. If it is binary, change
the options from LOAD to BLOAD, RUN to
BRUN, and set the binary flag (B = 1).

585: If the file type is text, change the
run option to EXEC and set the text flag (B
= 2)

590-610: Print all options available. Do
not print the load option if the file is text.

615-630: Prepare for future errors and
redefine A$ as just the file name (the sta-
tus is removed).

650: GET choice.

Lock file (660-700)

This routine will lock a file only if the user
confirms the action and the lock flag is set.

660: Check for the K command (LOCK).
If not K, then go to routine 4 (UNLOCK).

670: Otherwise, confirm action (GOSUB
3000).

680: If the lock request is not confirmed,
go back to the Mini-Menu.

690,700: If confirmation is given, lock the
file and change file name NA$(X) to include
an asterisk (*). Return to the main menu.

Center printing

Lines 690-699 are similar in appearance
to routines in each of the other sections,
so it is numbered 3 and will be referred to

each time the same function is performed.

690: Center the text vertically.

692, 694: Center the text horizontally.

699: Print the operation being performed
(in this case the operation is LOCK) and
perform that action. This is where major re-
visions will be found (compare lines 699,
745, 860, 979, and 1100).

Unlock file (710-760)

This routine will unlock a file only if the
request is confirmed and the lock flag is not
set.

710: Check for the U command (UN-
LOCK). If the lock flag is set or the U com-
mand was not entered, go to routine 5
(RUN/BRUN).

720: If the U command is entered and
the lock flag is not set, confirm the action
(GOSUB 3000).

740: Lets us know what’s going on (see
routine 3); then return to main menu.

Run/brun file (765-800)

765: If the R command (RUN/BRUN)
was not entered, continue to routine 7
(LOAD/BLOAD).

770: Set the DOS command to BRUN
(C$ = BRUN).

800: If the binary flag is zero, set the
DOS command to RUN (C$ = RUN) and
go to routine 6 (DOS CONTROL).

DOS control (810-890)

This routine has two entry points:

A. OPTIONAL ADDRESS (line 810)

B. DEFAULT ADDRESS (line 830)

Line 810 will ask where to put the file (for
BRUN or BLOAD). If the return key is
pressed, the binary program will default to
its normal location. If a different location is
desired, then enter that location (in hex or
decimal). A hex location MUST be preced-
ed by a dollar sign ($).

Enter at line 820 to bypass the optional
BLOAD/BRUN address.

To enter either routine, C$ must equal
the DOS command that is associated with
the desired action and A$ must be equal
to the file name . To enter the second rou-
tine, L$ and B$ must both be cleared.

820: Control the default address for bi-
nary files.

830: Get confirmation of the action to be
performed (GOSUB 3000).

840: If confirmation is not given, go back
to the Mini-Menu.

B850-880: If confirmation is given, print
the action (see routine 3) and call DOS 1o
do it.

890: Return to the main menu.

Load/bload file (900-930)

900: Check for the L command (LOAD
or BLOAD). If not L, go to routine 8
(DELETE).

910: Otherwise, set the default to
BLOAD.

920: If the binary flag is clear (B is not
equal to 1), change to LOAD (C$ = LOAD)
and enter routine 6 (DOS Control) at the
second entry point (line 820).

The Best of Hardcore Computing Page 48

930: If the binary flag is set, enter rou-
tine 6 at the first entry point (line 810).

Delete file (940-980)

940: Check for the D command (DE-
LETE). If not D, go to routine 9 (RENAME).

950; Otherwise, check the lock flag to
see if the file is locked. If s0, issue a warn-
ing (THIS FILE IS LOCKED).

960: Confirm action (GOSUB 3000).

965: If confirmation is not received, then
return to the Mini-Menu.

970: If confirmation is received, center
the text (see routine 3) and unlock the file
(in case it was locked); then delete it.

980: Restart the program.

Rename file (990-1120)

990: Check for the C command (RE-
NAME). If not C, go to routine 10 (UN-
LOCK/LOCK ALL).

1010: Otherwise, check the lock flag to
see if the file is locked. If itis, print a warn-
ing message.

1030: Confirm action (GOSUB 3000).

1050; If confirmation is not received,
return to the Mini-Menu.

1070: Otherwise, INPUT a new file
name.

1075: If the file name is greater than 30
characters, print an error message and go
back to the Mini-Menu.

1080: If the new name is nothing (return
was prassed), then return to the Mini-Menu.

1090-1100; Center the text (see routine
3) and do the required action.

1110: LOCK the file if the old file name
was locked (check the lock flag).

1115: Redefine the old file name,
NAS$(X), to be the first seven characters
(status) of the old file name plus the new
name.

1120: Return to the main menu.

Lock/unlock all (1160-1270)

This routine will allow us to UNLOCK or
LOCK ALL of the files on the disk.

1160: Iif A was not selected, go to rou-
tine 11 (EXIT).

1170: Otherwise, get the choice (LOCK
or UNLOCK).

1180: If the L or U key is not pressed,
go back to the Mini-Menu.

1190, 1200: Depending upon whether U
or L was pressed, set the DOS command
to LOCK or UNLOCK.

1210: Center the text (see routine 3).

1220-1260: Run through a loop perform-
ing the DOS action (LOCK or UNLOCK)
and modifying each file name, NA$(X) to
contain an asterisk (locked) or a blank (un-
locked) depending on the action taken.

1230: When a file consistingof “="s is
found, exit to the main menu.

Exit mini-Menu (1280}

1280: If the X, ctrl X, return or excape
key is pressed, go back go the main menu.
Otherwise, go to routine 12 (EXEC).

Exec text file (1282-1300)

1282: If the E command is not selected,
or if the text flag isn't set (B is not equal

to 2), then go to the Mini-Menu.

1284: Otherwise, set DOS command to
EXEC (C$=EXEC) and clear L$ and B$.
Go to the second entry point in routine 6
(line 830).

Error control

Control of error messages is done with
ONERR GOTOs. Depending upen where
the ERRor occurred, these are the
responses:

ERR IN NEW NAME. PLEASE TRY AGAIN

1310-1340: The new name of a file
(change command) is illegal. Lock the file
and print message. Return to the
Mini-Menu.

Il -UNABLE TO READ DIRECTORY H!

1350-1360: DOS was unable to read the
disk - probably an I/O ERROR. Print mes-
sage and exit the program.

ERR IN LOAD ADDRESS

1370: A bad loading address (used in
BLOAD/BRUN command). Print the mes-
sage to the screen and go to line 1340 to
get a keypress. Reenter the Mini-Menu.
STRANGE ERR. | WILL REREAD THE
CATALOG

1380: A strange error was encountered,
so reread the catalog. Go back to the hard
entry point (line 55).

Print help (3010-3080)

3010-3080: Print the instructions for the
help mode (invoked by pressing the escape
key when in the main menu).

Confirmation of action (3000)

3000: Asks for Y or N in order to confirm
an important DOS action.

Commands for MENU

RETURN : Read a new catalog into
memory.
ctrl C : Display a disk catalog.
Does not change the cata-
log in memory.
— : Page backward thru the
menu.
— : Page forward thru the
menu.

: Used to make single key
selections. Will enter the
mini-menu.

ctrl X : Exit the program
ESC : “HELP Mode”. Displays

the commands in
abbreviated form.

The BASIC listing starts here.

@ -—— SEE TEXT —-—-

S TEXT : HOME

6 REM INITALIZE STRING STORAGE

18 DIM NASC104)

20 FOR X = 1 TO 4D:HES = HE$ + "=":
NEXT X

3@ FOR X = 104 TO 1 STEP — 1: NAS(X)
= LEFTS$ (HES,38): NEXT

32 STX = PEEK (984)

33 FOR X = 2058 TO 2073 STEP 5: POKE
X,5T%: NEXT

4D NAS(D) = LEFTS (HES,19)

5@ D$ = CHR$ (4):G% = CHR$ (7) +
CHR$ (7)

52 REM HARD ENTRY (RE-READ CATALOG)

55 TEXT : HOME

6@ VTAB 12: HTAB 12: PRINT "READING
CATALOG '': VTAB 12: HTAB 29

18@ REM CALL MACHINE SUBROUTINE AND
GET A CATALOG

19@ ONERR GOTO 1350

200 CALL 2@54: PRINT D$'CATALOG"

202 REM GET MAXIMUM PAGE

2086 FOR X = 1 TO 3: IF MIDS (NAS(X *
26 +1),2,1) = "= THEN 210

208 NEXT

21@ MA = X - 1: POKE 216,@: PRINT
D$""PRA®'': PRINT D$"INH@'": PRINT

220X =10

225 REM PRINT OUT FILENAMES ALSO
SOFT ENTRY POINT

23@ HOME

240 VTAB 1: HTAB 1@: PRINT MID$
(NAS(@),3,15)

25@ VTAB 3: PRINT HE$: VTAB 19:
PRINT HES

270 IF X < @ THEN X = MA

280 IF X > (MA) THEN X = @

290 POKE 34,4: POKE 35,18

30@ VTAB 5: HTAB 1: PRINT

310 HOME

315 REM PRINT FILENAMES OM LEFT SIDE
OF SCREEN

320 FOR Y =1 T0 13

322 A% = MID$S (NAS(26 = X + Y) ,8,17)

325 IF MIDS (A%,2,1) = "=" THEN Y =
Y - 1: GOTO 440

330 A% = CHRS (B4 + Y) + " " + AS

350 PRINT A%

340 NEXT

370 VTAB 5

375 REM PRINT FILENAMES ON RIGHT
SIDE OF SCREEN

380 FOR Y =1 T0 13

382 A = MIDS (NAS(26 = X + ¥ +
13),8,17)

385 IF MIDS (A%$,2,1) = "="" THEN MA =
XY = ¥ + 12: GOTO 440

390 A% = CHRS(O65+Y+12) + " " + A%

410 HTAB 21: PRINT A%

420 NEXT

427 REM CHECK FOR LEGAL SELECTION

430 Y = 26

435 REM PRINT PAGE # AND GET FILE
SELECTION

44@ POKE 34,28: POKE 35,24

45@ VTAB 22: HTAB 3@: PRINT "PAGE ''X
+ 1" OF "MA + 1;

460 VTAB 24: HTAB 1@: INVERSE :
PRINT ""PRESS 'ESC' FOR HELP";:
NORMAL

470 VTAB 21: HTAB 1: PRINT "SELECT
OME (PRESS A KEY) '"';: GET AS$:
PRINT

475 IF A$ = CHRS (B) AND MA <> 1
THEN X = X = 1: GOTO 270

480 IF A% = CHRS (21) AND MA <> D
THEN X = X + 1: GOTO 270

490 IF A$ = CHRS (24) THEN 1300

50@ IF A% = CHR$ (27) THEN 301@: REM
IS 1T ESC

51@ IF A% = CHR$ (13) THEN 55

520 IF A$ = CHR$ (3) THEN TEXT :
HOME : PRINT DS$"CATALOG": GET
B$: PRINT : PRINT : HTAB 8:
PRINT "HIT ANY KEY TO CONTINUE
""-: GET B8%: GOTO 238

The Best of Hardcore Computing Page 49

530 IF AS > CHRS (Y + 64) THEN 470
540 IF A$ < "A" OR A$ > "2" THEN 470
550 A = ASC (AS) - 64

555 REM INITALIZE DEFAULTS FOR THE
MINI-MENU AND PRINT OUT CHOICES

56@ TEXT: HOME: VTAB 2: HTAB 16:
PRINT ""MINI-MENU"

565 VTAB 7: HTAB 3:A% = NAB(X » 26 +
A): PRINT A$

570 L = @:8 = D:L$ = "K) LOCK":B$ =
Y'L) LOAD":B1% = "R) RUN"

575 IF LEFT$ (A$,1) = "*'"" THEN L =
1:L% = "U) UNLOCK"

580 IF MID$ (A%$,2,1) = "B" THEN B
1:B% = ''L) BLOAD":B1$ = '"R)
BRUN"'

585 IF MID$ (A%$,2,1) = "T" THEN B
2:8% = "E) EXEC"

590 PRINT L$: PRINT B$: IFB <> 2
THEN PRINT B1%

595 PRINT "'D) DELETE'": PRINT "'C)
CHANGE PROGRAM NAME'

600 PRINT ''A) LOCK/UNLOCK ALL"

61@ PRINT '"X) EXIT TO CATALOG"

615 ONERR GOTO 1370

620 BS = '"': FOR Y = 37 TO 8 STEP -
1: IF MIDS (AS,Y,1) =" " THEN
NEXT

630 A$ = MIDS (A$,8,Y - 7}

640 PRINT

650 PRINT "ENTER YOUR CHOICE > ";:
GET B$: PRINT: PRINT

655 REM LOCK FILE

660 1F BS <> "K" OR L <> @ THEN
71@: REM LOCK FILE ONLY IF IT IS
UNLOCKED NOW

670 PRINT ""LOCK "A$;: GOSUB 3008

680 IF B < > "Y" THEN 560

690 HOME: VTAB 12

692 ¥ = 40 - LEN (A%$) - LEN (B%) - 8:
IFY<2THEN ¥ = 2

694 HTABR (Y / 2)

699 PRINT ""LOCKING "AS$: PRINT
D$"'LOCK"'AS

70D NASC(X * 26 + A) = "*" + RIGHTS
(NASCX * 26 + A),37): GOTO 238

7@5 REM UNLOCK FILE

710 IF B$ <> '"U" OR L <> 1 THEN
76@: REM UNLOCK FILE ONLY IF
FILE IS NOW LOCKED

720 PRINT "UNLOCK "AS$;: GOSUB 3000

730 IF B$ < > "Y' THEN 560

740 HOME: VTAB 12:Y = 40 - LEN (A$)
-11: IFY<2 THEN Y = 2

745 HTAB Y / 2: PRINT "UNLOCKING
"A$: PRINT D$'"'UNLOCK"A$

750 NASCX * 26 + A) =" " + RIGHTS
(NABCX * 26 + A),37): GOTO 238

760 IF B = 2 THEN 940

762 REM RUN/BRUN FILE

765 1F B$ < > "R THEN 900

770 LS = "M':BS = '":CS = "BRUN"
800 IF B = @ THEN C$ = "RUN": GOTO
830

8@5 REM IF FILE IS BINARY GET OP
TIONAL LOAD ADDRESS

810 PRINT: PRINT ""WHERE TO "C$;: IN
PUT "' (DEC $HEX) > ";L$: PRINT

820 IF L$ <> "" THEN BS = " AT "

83@ PRINT C$'" ""ASBSLS;:E$ = BS:
GOSUB 30@0:T$ = E$:E$ = B$:B$ =
T$

840 IF E$ < > "Y' THEN 560

845 ONERR GOTO 1370

B50 PRINT: HOME: VTAB 12

852 Y = 4@ - LEN (A$) - LEN (C$) -
LEN (L$) - LEN (B%) - 5

854 IFY<2THENY = 2

856 HTAB (Y / 2)

860 PRINT C$'"ING "A$BSLS

B70 IF L$ <> ' THEN L$ =" A" + LS

880 PRINT DSC3ASLS

890 GOTO 230

895 REM LOAD/BLOAD SELETED FILE

980 IF BS < > "L THEN 940

910 B$ = '""':L$ = '""':C$ = ""BLOAD"

920 IF B <> 1 THEN C$ = "LOAD": GOTO
820

93@ GOTO 810

935 REM DELETE FILE

940 IF BS < > "D’ THEN 99@

950 IF L = 1 THEN PRINT GS"THIS FILE
1S LOCKED"

96@ PRINT: PRINT "DELETE "'A%$;: GOSUB
3000

965 IF B$ < > "Y" THEN 568

970 PRINT: HOME: VTAB 12

972 ¥ = 4B - LEN (A$) - 9

974 IF Y < 2 THEN ¥ = 2

976 HTAB (Y / 2)

979 PRINT "DELETING "A$: PRINT
D$'"UNLOCK"AS: PRINT D$"DELETE"A$

980 RUN

985 REM RENAME FILE

990 IF B$ < > "'C'" THEN 116@

1000 ONERR GOTO 1310

181@ IF L = 1 THEN PRINT G$"THIS
FILE IS LOCKED"

182@ PRINT

1@3@ PRINT "'RENAME 'AS$;: GOSUB 3000

1848 PRINT

1@85@ IF BS < > "Y'* THEN 56@

106@ PRINT

10870 PRINT '"'CHANGE "'A$' '";: INVERSE:
PRINT "'TO";: NORMAL: PRINT ' ";:
INPUT BS

1@75 IF LEN (B$) > 3@ THEN HOME:
VTAB 12: GOTO 1320

1080 IF B$ = """ THEN 560

1@9@ HOME: VTAB 12

1892 Y = 4@ - LEN (A$) - LEN (BS) -
12

1094 IF Y > 38 OR Y <3 THEN Y = 2

1096 HTAB (Y / 2)

118@ PRINT ''CHANGING "A$" ';: IN
VERSE: PRINT "'TO";: NORMAL:
PRINT " "B$: PRINT D$"UNLOCK"AS$:
PRINT D$''RENAME"AS","BS$

1110 IF L = 1 THEN PRINT D$"LOCK"BS

1115 NAS(X * 26 + A) = LEFT$ (NAS(X
* 26 + A),7) + BS

1120 GOTO 230

1130 REM UNLOCK/LOCK ALL FILES

1168 IF B$ < > "A" THEN 12808

117@ PRINT: PRINT "LOCK/UNLOCK ALL
FILES ';: INVERSE: PRINT "L/U";:
NORMAL: GET B$

1180 IF B$ < > "L'"" AND BS < > '"U"

THEN 560
119@ IF BS = "U" THEN BS =
"MUNLOCK'':T$ = " '

1200 IF BS = "L" THEN B$ = ""LOCK":T$
= Ixh

1219 PRINT: HOME: VTAB 11: HTAB (40
- LEN (B$) - 6) / 2: PRINT
BS'"ING ALL"

1220 FOR Y = 1 TO 185

1230 IF MID$ (NAS(Y),8,2) = "'=="
THEN 230

1240 VTAB 13: HTAB 1@: PRINT MID$

(NAS(Y),B,30)

125@ PRINT DB MID$ (NAS(Y),8,3@)

1252 NASCY) = T$ + RIGHTS
(NASCY),37)

126@ NEXT

127@ GOTO 230

1275 REM EXIT MINI-MENU?

1280 IF BS = "X" OR B$ = CHR$ (27) OR
B$ = CHR$ (13) OR B$ = CHR$ (24)
THEN 230

1281 REM EXEC TEXT FILE

1282 IF B <> 2 OR B$ < > "E" THEN
560

1284 C$ = "EXEC":L$ = '"':B% = "'";
GOTO 830

130@ TEXT: HOME: END

13@5 REM ERR ROUTINES

131@ IF L = 1 THEN PRINT D$'"LOCK"AS

1320 PRINT: PRINT G$'" ERR IN NEW
NAME. PLEASE TRY AGAIN"

133@ ONERR GOTO 1350

1340 PRINT: HTAB 7: PRINT '""PRESS ANY
KEY TO CONTINUE";: GET B$: GOTO
560

1350 POKE 216,@: PRINT D$''PRHD":
PRINT D$"INH@': PRINT

1360 HOME: VTAB 12: HTAB 3: PRINT
G$'!!! - UNABLE TO READ DIRECTO
RY 111"z POKE 216,@: END

1370 HOME: VTAB 12: IF LEFT$ (L$,3)
= " _AS$'' THEN HTAB 10: PRINT
G$"ERR IN LOAD ADDRESS': GOTO
1340

1380 PRINT G3"'STRANGE ERR. I WILL
RE-READ THE CATALOG'": PRINT:
HTAB 6: PRINT "PRESS ANY KEY TO
CONTINUE'";: GET B$: GOTO 55

2999 REM SUBROUTINE TO GET KEYPRESS

30@@ PRINT " '";: INVERSE : PRINT
"Y/N'';: NORMAL : GET BS: PRINT :
RETURN :

3@@5 REM PRINT INSTRUCTIONS

3010 TEXT : HOME : VTAB 2: HTAB 16:
PRINT '"COMMANDS": PRINT : PRINT
HE$: PRINT

3@20 PRINT "> RIGHT ARROW MOVE FOR
WORD THRU MENU': PRINT

3@30 PRINT "< LEFT ARROW MOVE BACK
WORD THRU MENU": PRINT

3040 INVERSE : PRINT "M';: NORMAL :
PRINT " "RETURN' GET'S A NEW
CATALOG": PRINT

3B5@ INVERSE : PRINT "C'";: NORMAL :
PRINT '* CTRL "C' GET A NORMAL
CATALOG": PRINT

3@6@ INVERSE : PRINT "X'';: NORMAL :
PRINT ' CTRL "X"' EXIT MENU":
PRINT

3@07@ PRINT " ANY LETTER A-Z GO'S
TO MINI-MENU": PRINT

3080 VTAB 2@: HTAB 7: PRINT "PRESS
ANY KEY TO CONTINUE";: GET BS:
PRINT : GOTO 230

4008 REM

4005 REM PROGRAM WRITTEN

4010 REM BY

40208 REM ROBB CANFIELD

The Best of Hardcore Computing Page 50

5 - $0050 230 - $B03D 410 -$994B 570 - $C7A2 Menu checksums 970 - $E2D1 1096 - $ASC3 1281 - §8051 3060 - $26A9
6 -$BA76 240 -$7114 420 -$BF31 575 - $BAD1 972 -%7310 1100 - $95AB 1282 - SEAA3 3070 - $E475
10 - $6753 250 -853C0 427 -S$10FA 580 -$2A17 699 - $CEE4 845 - $05FA 974 -83099 1110- $90ES 1284 - $9331 3080 - $4460
20 - $F009 270 -S$3FD6 430 - $09D0 700 -$E406 850 - $44E0 976 - $AATH 1115- $88D9 1300- $7181 4000 - $EBS2
30 -$B6DF9 280 - $8EED 435 - $AS6A 585 - $35F4 705 -$BC41 852 - $A075 979 -875B0 1120- $308C 1305- $2235 4005 - $7C2D
32 - $4E1A 290 - $B61D 440 - 34E50 590 - §7058 710 - $BA37 B854 - $4432 98B0 -$2356 1130 - $2CD4 1310 - $755E 4010 - 7401
33 -$973D 300 -$BE6D 450 - $9F95 595 -$5D54 720 - $F944 856 - 58723 985 - BCEO7 1160 - $6EB4 1320 - $C5B7 4020 - $AET4
40 -$BB13 310 - $E451 460 - $80DA 600 - $0694 730 - $ABB3 860 - $E2A9 990 - $2A88 1170 - $AS7B 1330 - $7FB8
50 -$5224 315 -$6865 470 - $9BEB 610 - $5646 740 - $2481 870 - $1F26 1000 - 85740 1180 - $6FE8 1340 - SEACB
52 - $46F9 320 - $96F1 475 - SEDB6 615 - $C21B 745 - $94F8 880 -$DCC7 1010- $8AD5 1190 - $385F 1350 - $8ES8
55 - $591E 322 -$530F 480 -$73A3 620 -$DF34 750 -$CD4F 890 - $36AF 1020 - $9C50 1200 - $12F2 1360 - $7BOC
60 -$C079 325 -§5A22 490 -$C7A4 630 -$BA43 760 -$1823 895 -$EBAB 1030-3%0713 1210 - $06FE 1370 - $2909
180 - $FFD9 330 - $968F 500 -30C53 640 -83041 762 -$306C 900 -3$73CF 1040-$97CC 1220 - $FO9E 1380 - 56010
190 -$9236 350 - §774A 510 - $0E7F 650 -$BB2E 765 -$282D 910 - 3EGAE 1050 - $B008 1230 - $C2FA 2999 - §2C27
200 -$F979 360 - $FASB 520 -$C11B 655 - $C4B9 770 - $47A2 920 -$BB3A 1060 - $88E3 1240 - $0FDC 3000 - $D274
202 -$CFC7 370 -$0255 530 -$8219 660 - $78BE 800 - $6FSC 930 -$3A13 1070- $C0SD 1250 - $50D3 3005 - $6084
206 - $2F7F 375 - $7CAD 540 -$0AB7 670 -$8C37 805 -874E9 935 -$A733 1075- 85314 1252 - $2A22 3010 - $F25D
208 - $39E4 380 - $8ADB 550 -$90BB 680 -$12B4 810 - $52A7 940 -$4302 1080- $C478 1260 - §C22D
210 - $OEBO 382 - $CEDY 820 - $7AV3 950 -8%C867 1080 - §B32D 3020 - $1559
220 - $A834 555 -$CD3E 690 - $BFFB 960 - SEDOA 1270 - $09CA 3030 - §576C

385 -$957B 560 - $F026 692 - $9599 830 - $57BD 1092 - $EB78 1275 - $FFEF 3040 - $A578B
225 -$930B 390 -$CCBO 565 - $B429 694 -$10DA 840 - $B575 965 - $28BFE 1094 - $03D3 1280 - $C0OBB 3050 - $5605 ‘

Using Both Sides of Your Diskettes

You can increase your disk storage from
143,360 to 286,720 bytes by simply using
both sides of a ‘single-sided” disk. All you
need to accomplish this feat is a standard
hole punch.

Flip it

The only thing that prevents the use of
both sides of single-sided diskettes is that
they are effectively write-protected. In other
words, there is no notch on the flip side.

Take two floppies and flip one over so
that they are facing each other. Mark where
and how far in the notches are and then
use the hole punch to cut the second
notch. Now, initialize the disk normally.

Don’t flip it!

Makers of minifloppies and disk drives
do not recommend that you use both sides
of your diskettes if you have a one-head
drive because:

1. When the drive head is applied to one
side, a felt loading pad is pressed against
the other side. That pad accumulates oxide
particles that may scour the reverse side.
When flipped, the contaminated pad may
then scour the prime side as well. This may
lead to premature loss of data and the
accumulation of read errors that may go
unnoticed or be intermittent, making the
drive unreliable.

2. The direction of rotation is reversed
when the diskette is flipped and this may
dislodge oxide particles that have accumu-
lated on the liner material. The results
would be similar to those in (1).

Neither problem occurs on a two-head
drive because the pressure pad is replaced
by another write-head and the direction of
rotation does not change.

What to do about flaws
Sometimes the flip side of your one-sided

diskettes will contain flaws. These are
areas where the oxide coating on the disk
are too thin to reliably store data.

To avoid losing your valuable files, it
would be wise to check the flip side before
use. It's also a good idea to check the front
side. Sometimes DOS will write a margi-
nal address or data mark. The disk will then
appear to have a flaw but reinitializing the
disk will clear this.

There are at least two software packages
(programs) that will check your disks for
flaws and then alter the Volume Table Of
Contents (VTOC) so that these bad sectors
are defined as already used:

1. Disk Prep ($25), by Sympathetic Soft-
ware, 9531 Telhan Dr., Huntington Beach,
CA 92646

2. Disk Recovery ($30), by Sensible Soft-
ware, Inc., 24011 Seneca, Oak Park, Ml

48237
%

Diskedit Checksums, continued from page 11

10A0:20 CCOAA93C AAACO0 $5466
10A8:C030 07 CADOFBE9 01 $COE9
10B0:D0 F3 60 A9 15 20 8F 0A $2D11
10B8:A0 1EAD 340820 D110 $03FC
10CO:AE 6D 08 FO 0B A9 AD 91 $8196
10C8:28 CECADOFS60AD2B $CB58
10D0:08 48 AE2F 0B DO 2A 8E $18C4
10D8:6D 08 A9 A4 9128 C8 68 $CO6B
10E0:48 4A 4A 4A 4A09B0OC9 $4ECF
10E8:BA 90026906 91 286 G8 $3907
10F0:68 29 0F 09 BO C9BA 90 $6022
10F8:0269 06 91 28 C8 8424 $5C10
1100:60 A2 02 8E 6D 08 A2 B0 $1043
1108:68 C9 64 90 12 E8 E9 64 $684E
1110:C964 BOFI CE 6D 08 48 $9BE1
1118:8A91 28 C8 A2 B0 68 C9 $9BFB
1120:0A90 0OAESEQ OAC90A $3B75

1128:B0 F9 CE 6D 08 48 AD 6D
1130:08 C9 02 FO 04 8A 91 28
1138:C8 68 09 B0 91 28 C8 60
1140:A2 15 86 23 A2 00 8E 6D
1148:08 EB 8E 72 08 20 58 FC
1150:E8 20 4A F9 AD 01 09 20
1158:06 12 AD 02 09 20 06 12

1160:20 62 FC 20 62 FC A2 0B
FC 20 09 12

$39DC
$1D64
$ABOC
$1C5F
$092E
$EODE
$E4F1

$8105
$31A1
$4274
$63D9
$CA56
$455D
$9425
$7F5C
$3DE1
$409C

1180:B1 E9 29 FO 18 65 EO C9
11B8:80 30 06 C9 AD 10 02 A9
11C0:AE 20 ED FD E8 CE 6C 08
11C8:D0 DB EB E8 DO 9A CA 86
11D0:E4 60 D4 C9 C1 C2 D3 D2
1108:C1 C2 AD 2B 08 C9 FF DO
11E0:05 A9 AD 8D 2B 08 4A 4A
11E8:4A 4A 4A ABBO F6 11 18
11F0:6D 2B 08 4C ED FD CO 80
11F8:80 40 40 00 00 CO A9 A4

1200:20 ED FD AD 2B 08 20 DA
1208:FD A9 A0 4C ED FD AE 2F
1210:08 FO EB AE 2B 08 A9 00
1218:20 24 ED 4C 09 12 00 00
1220:00

$DFA2
$FD3E
$2D2A
$8F69
$0778
$7CCA
$04CD
$6229
$5E68
$FC93

$0B6C
$7FBD
$BD61
$91EC
$CE11

The Best of Hardcore Computing Page 51

Advanced Playing Technigques (APT) or How to Get

Inside Castle Wolfenstein

REQUIREMENTS:
Super |OB program
Castle Wolfenstein by Muse Software

Castle Wolfenstein is an arcade-
adventure game using hi-res graphics. You
are an escaped prisoner of war, trapped in
a castle full of Nazi guards and SS troops.
You must find the path to freedom and
maybe a set of War Plans that are also in
the castle.

The gamae is enjoyable and very addic-
tive. Unfortunately it has one rather annoy-
ing routine — every time you run into a wall
the screen flickers and a horrible noise is-
sues from the speaker.

After playing quite a few games, | be-
came frustrated by this sound and resolved
to eliminate it. The first problem that | en-
countered was our old enemy, software
protection.

The Lock

Castle Wolfenstein is on a modified
13-sector disk that will boot on 13 or
16-sector Apples. The only protection used
i5 to write even sector numbers to the disk.
This means that the sectors step by two (ie.
0,2, 4,6,8,10). In order to break this protec-
tion scheme, read "“Super |IOB".

Making Changes
| located three different sound routines.
The locations to change are listed in Figure
1 in the form of pokes. To turn these rou-
tines ON or OFF follow these steps:

1) Load the file to change
BLOAD @WOLF

2) POKE in the desired change(s).
3) Save the modified file

BSAVE @WOLF,A$810, L$16EB
Figure 1
POKE ON OFF

Sound Routine

Grenades 4405 48 16
Gun Fire 4045 48 16
Wall Collision 4087 1 (]
Screen Flicker 5327 141 96

Turning off these routines has no effect
on the game other than eliminating the
specified sound. For example, turning off
the wall noise does not turn off the screen
flickering, nor does it stop the Nazi's from
moving.

By Robb Canfield

Strategies

Any game has its DOs and DON'Ts, and
Castle Wolfenstein is no different. When
you are on the first level (a single room with
no doors, only a stairway), wait for the
guards to be in a prime position before
shooting. The guards will not attack you un-
less you move, attack them or they bump
into you. When you leave a room, try to
point the gun in a direction that gives the
best chance of scoring a hit. This usually
means pointing the gun in the direction you
are moving. When entering a new room-
leave it immediately. This allows you to
think about the situation and ready your
gun appropriately.

When to Kill

Try to kill the guards when they are next
to a doorway. This stops the other guards
and SS from getting to you. The Nazi's
won't cross over fallen bodies. They can
still fire at you, they just can’t catch you.
This can be used to create a safe place
from which to throw grenades and such.

Shooting Through Walls

Another handy technique is to shoot
through walls. For some reason Castle
Wolfenstein will let you fire through corn-
ers. This allows you to shoot a guard and
not risk being caught. One can also open
up chests that are located in a corner. This
saves time and avoids unnecessary risks.

Advanced Playing Techniques
The following techniques may be consi-
dered cheating by the less enlightened, but
more open-minded individuals will readily
see we are only taking advantage of the
program and its limitations.

Life Beyond Death

Normally when the reset key is pressed
Castle Wolfenstein saves the current
game. You can change this so that instead
of saving the game, you exit back to Ap-
plesoft. Once there, you can re-boot and
resume the game one room back. There
is a reset routine in both @INIT and
@WOLF, but you are only concerned with
the routine in @WOLF for the moment. |
have listed the routine here so that it can
be easily modified. A complete explanation
of how the reset vector works can be found
on pages 36 and 37 of the Apple][Refer-
ence Manual.

Figure 2
1187: A9 C7 LDA #8C7 Set the
1189: 8D F2 03 STA $P3F2 RESET vector
118C: A9 1E LDA #$1E so that it
118E;: 8D F3 03 STA $B3F3 jmps to 1EC7
1191: 49 A5 EOR #8Ab Set the power
1193: 8D F4 03 STA $03F4 up byte

| wanted the Apple to re-boot the disk
when | pressed the RESET key. To do this,
type:
BLOAD @WOLF

Enter the monitor and type the following
line:

1191:EA EA

Return to Applesoft (3D0G) and save
@WOLF:

BSAVE @WOLF,A$810, L$16EB

NOTE: The ESC key (which saves the
game) will still operate normaily.

For The Aggressive Player

Castle Wolfenstein was written so that
every room is stored on a unique sector.
When the game first starts the track/sec-
tor list of CASTLE is read and stored in
memory. The first sector contains the vari-
ables.. Every time you enter a new room,
the old foom is saved and the new one is
read in. This means that any room modifi-
cations you have made (grenades are han-
dy for this) will be saved. It also allows you
to go back one room if you just happen to
make a fatal error. Also, if you have a disk
editing program, such as DiskEdit, you can
give yourself 255 bullets and grenades.

The Right Sector

First you have to find where this sector
is. Read track $11, sector $C. This is the
first sector of the catalog for Castle Wol-
fenstein. Look for the program *BACKUP
(some copies may have the name BACK-
UP). If it is not on this sector, try sector $08
of the same track. If you still haven't found
it, you are doing something wrong.

After locating the name, back up three
bytes to find the Track/Sector list (how this
information is stored is explained on pages
128-131 of the DOS Manual). Read this
sector. Look at the thirteenth byte ($8C).
The first number is the track where the first
sector of the program is located, the next

The Best of Hardcore Computing Page 52

byte is the sector. Read this track/sector.
You now have the first sector of the pro-
gram in memory ready to be modified.

| found the file name *BACKUP on track
$11, sector $0B. The third byte back from
the name was $14 and the second bylte
was $0C, so | read track $14, sector $0C.
After reading this sector, | looked at the
13th ($0C) byte. It was $20 and the next
byte was $0B. This meant that the first sec-
tor of the program was located on track
$20, sector $0B.

Some Custom Changes

Once the sector is in memory, move to
the proper location and change the byte to
the desired value (use the O command to
move the cursor if you are using DIS-
KEDIT). The table in Figure 3 shows the
item, the location in the sector and the
value to place there. All values are in hex-
adecimal.

Example: To get 255 bullets, move the
prompt to location $47 and change the
value there to $FF.

Figure 3

Desired ltem Byte Value
Bullets $47 O-$FF
Grenades $48 O-$FF
Uniform $49 $01
Bullet-Proof Vest $4A $01
War plans $6C 301
Rank $6D see text
Room # $40 see text
Resurrection $6F 500
% Chance of Hit $4B O-$FF
% Chance of Recog. $4D 0-$FF

NOTE: Change both “BACKUP and
ACASTLE (also known as CASTLE) to be
sure the modifications stick. These two files
are used alternately at different levels of
play.

Where Are You?

The map in Figure 4 shows the layout of
the Castle. Each room has a number. This
is the number to use if you need to change
rooms,

NOTE: You may end up in a wall if you
play with the room number. If this happens,
you will have to try another room or change
your position in the room. Bytes $43-$45
have somsthing to do with your position wi-
thin the room.

Your rank can be changed to a higher
level which will cause the game to be much
harder and more interesting. The values
that correspond to the various ranks are as
follows

$10 Private $90 Captain
$30 Corporal $A0 Colonel
$50 Sergeant $CO General

$70 Lieutenant $E@ Field Marshall

Resurrection
If you happen to press RESET too late,
your game can still be retrieved if you stop
it before playing again. Put a $@0 in byte
$6F in the sector.

Giving It your Best Shot
Byte $4B determines the percent chance
of your achieving a Kill. The higher the
number ($FF is greatest), the better your
chances.

I’m Not Really Here
Byte $4D determines the percent chance
of your being caught with $FF being the
greatest percent chance of being
recognized.

Some Minor Glitches

1) When you have more than 1@ bullets,
the display will still show you as having only
ten bullets. This value will decrement once
for each shot fired. Do not get bullets from
a box. If you do, the program will replace
the actual number of bullets you have with
10.

2) The grenade value appears as a let-
ter or symbol that changes for each
grenade thrown. The grenades do decre-
ment by one for each thrown.

Neither of the above problems affects the
play of the game, except to give you a lot
of bullets and grenades.

Escaping Castle Wolfenstein

The path out of Castle Wolfenstein is al-
ways the same. The contents of each room
are randomized for each new game. Once
this map is memorized it becomes easier
to escape the castle. Unfortunately, the
plans are not guaranteed to be on the way
out. My favorite tactic is to run for the exit,
zapping or dodging as required and open-
ing all chests | find along the way. If | ha-
ven't found the plans by the time | reach
the last room, | backtrack and search until
| find them.

Another APT
This APT program is an alternate method
to changing the variables in Castle
Wolfenstein.
Enter the program and save it to disk.

SAVE WOLFENSTEIN APT

Insert your unprotected Castle Wolfen-
stein disk and run the program. You will be
asked for the file you wish to alter.

Remember: change both BACKUP and
CASTLE in the same way to insure that the
variables are indeed changed (or “BACK-
UP and ACASTLE if these are on your disk
instead).

The default answer is Yes. ESC will
return you to the main menu, or if pressed
from the main menu will terminate the pro-
gram. There is one additional choice
provided, FIX BAD FILE. If when you are

playing Castle Wolfenstein, the program
freezes, try this option. It should restore the
game and eliminate all S8 whao are active-
ly pursuing you.

Figure 4
uP
1 {Starting point) Level 1
up
8 9 10 Level 2
5 6 I 7
| |
2 3 4
DOWN
i Level 3
uP
48 — 49 50 51 Level 4
|
44 — 45 | 46 47
40 41 42 43
36 37 368 R 39
Level 5

EXIT

@ Direct escape route

— Other room connections

The Best of Hardcore Computing Page 53

10@ TEXT : HOME : NORMAL :
HIMEM: 16380

11@ DATA 32,227,3,76,217,3

120 FOR X = @ TO 5: READY: POKE
768 + X,Y: NEXT

130 D$ = CHRS (13) + CHR$ (4)

140 INVERSE : VTAB 2: HTAB 5:
PRINT "A.P.T. FOR CASTLE
WOLFENSTEIN'': NORMAL

150 VTAB 7: HTAB 5: PRINT "1)
CHANGE CASTLE": HTAB 5:
PRINT "'2) CHANGE BACKUP'

160 PRINT : HTAB 5: PRINT "3)
CHANGE ~CASTLE'': HTAB 5:
PRINT "4) CHANGE "BACKUP'"

170 POKE 216,08: VTAB 13: HTAB
1@: PRINT "WHICH ONE (1-4)
CHR$(7);: GET A%

180 IF A$ = CHR$ (27) THEN HOME:
PRINT '"PROGRAM TERMINATED":
END

190 IF A$ < " OR AS > "4" THEN
140

200 FI$ = "CASTLE": IF A$ = "2"
OR A$ = "4'" THEN FI$ =
"BACKUP"

210 IF A$ > "2" THEN FI$ = "AM +
FI$

220 ONERR GOTO 170

230 PRINT DS$'VERIFY'FI$: POKE
216,0: Gosue 810

240 B1 = PEEK (TB) + PEEK (TB +
1) = 256

250 POKE TR, PEEK (B1 + 12):
POKE SE, PEEK (B1 + 13)

260 POKE CMND,1: POKE BU,@:
POKE BU + 1,64: POKE VOL,@:
CALL 768

270 IF PEEK (ERR) > 15 THEN 74@

280 FI$ = "MAXIMUM GRENADES':
GOSUB 92@: IF B THEN POKE DB
+ 72, 255

290 FI$ = "MAXIMUM BULLETS":
GOSUB 92@: IF B THEN POKE DB
+ 71, 255

300 FI$ = "A UNIFORM": GOSUB
92@: IF B THEN POKE DB +
73,1

310 FI$ = "A BULLET PROOF VEST":
GOSUB 920: IF B THEN POKE DB
+ 74, 1

320 FI$ = "THE WAR PLANS": GOSUB
920: IF B THEN POKE DB +
108, 1

330 IF PEEK (DB + 111) = @ THEN
350

340 FI$ = "TO BE RESURECTED'":
GOSUB 92@: IF B THEN POKE DB
+111,0

350 HOME

360 FI$ = "TO CHANGE YOUR RANK'":
GOSUB 92@: IF NOT B THEN 450

370 PRINT : PRINT "CURRENT RANK
IS "; INT ((PEEK (DB + 10%9)
/16 +1) /1 2)

380 PRINT : POKE WL,5: PRINT :
PRINT '"1) PRIVATE": PRINT
"2) CORPORAL"

290 PRINT "3) SERGEANT': PRINT
"4) LIEUTENANT": PRINT ''5)
CAPTAIN"

400 PRINT "6) COLONEL": PRINT
"7?) GENERAL'': PRINT "'8)
FIELD MARSHAL"

410 PRINT = PRINT "WHICH ONE
(1-8) ";: GET A%

42@ POKE WL,B:A = VAL (AS$)

430 IF A <1 OR A > 8 THEN PRINT
= PRINT : PRINT "MAINTAINING
OLD RANK": FOR X =1 TO 500 :
NEXT : GOTO 450

440 POKE DB + 109,(2 » A = 1) =
16

450 HOME

460 FI$ = "TO CHANGE ROOMS":
GOSUB 920: IF NOT B THEN 510

470 PRINT : PRINT '"CURRENTLY IN
ROOM *'; PEEK (DB + 64)

480 PRINT : INPUT "ENTER ROOM
NUMBER (1-6@) ";A$

490 B = VAL (A$): IFB<10RB
> 60 THEN PRINT : PRINT
"MAINTAINING OLD ROOM'": FOR
X =1 TO 500: NEXT : GOTO 510

500 POKE DB + 64,B

510 HOME

520 FI%$ = "TO CHANGE PERCENT
CHANCE OF ACHIEVING A HIT":
GOSUB 920

53@ IF NOT B THEN 600

540 PRINT : PRINT '""CURRENT
CHANCE IS '';

55@ PRINT INT (PEEK (DB + 75) /
255 * 108) ;"'%"

56@ PRINT : INPUT "ENTER PER-
CENT WANTED "';AS$

570 IF A$ = """ THEN 600

S80 B = VAL (A$): IFB<OQORGB
> 100 THEN 600

590 POKE DB + 75,255 ~ B / 100

600 HOME

618 FI$ = "TO CHANGE PERCENT
CHANCE OF BEING RECOGMNIZED":
GOSUB 920:

62@ IF NOT B THEN &80

630 PRINT : PRINT "CURRENT
CHANCE IS "; INT (PEEK (DB
+ 77) [/ 2.55)m%m

640 PRINT : INPUT '"CHANGE PER-
CENT CHANCE TO '';A$

650 IF A$ = "v THEN 680

660 B = VAL (A$): IFB<QORB
> 100 THEN 680

670 POKE DB + 77,255 « B / 100

688 HOME

698 FI$ = "TO FIX A BAD FILE":
GOSUB 92@: IF NOT B THEN 710

700 FOR X = 11@ TO 256: POKE DB
+ X,@: NEXT : FOR X = 76 TO
106: POKE DB + X,@: NEXT

710 HOME : VTAB 12: HTAB 16:
PRINT "WRITTING"

720 POKE CMND,2: POKE VOL,@:
CALL 768: HOME

730 IF PEEK (ERR) < 16 THEN 140

743 PRINT CHRS (7)"WARNING, DOS

ERROR"

750 E = PEEK (ERR)

76@ IF E = 16 THEN PRINT "WRITE
PROTECTED (REMOVE TAB)

77@ IF E = 64 THEN PRINT "DRIVE
ERROR (I/0)"

780 IF E <> 10 AND E <> 40
THEN PRINT "UNUSUAL ERROR,
CODE = ";E

79@ TEXT

800 END

81@ FT = 46582:SL
46 584

820 TR = 47084:5E = 47085

830 NS = 46574:TB = 46537

840 WL = 32:WW = 33:WT = 34

850 CMND = 47@92:ERR = 47093

860 VoL = 47083

870 BU = 47088

880 DB = 16384

890 HOME : INVERSE : PRINT "FILE
NAME:";

90@ NORMAL : PRINT ' ";FI$

910 POKE WT,5: VTAB 6: POKE ERR,
@: RETURN

920 B = @: PRINT "'DO YOU WANT
":: POKE WL,12: INVERSE :
PRINT FI$;: NORMAL : PRINT "
(Y/N) ";: GET A%

930 POKE WL,0

940 IF A$ = CHRS$ (27) THEN POP :
GOTO 140

950 IF A% = CHR$ (13) THEN PRINT
: RETURN -

96@ PRINT A$S

970 IF A$ = "Y' THEN B = 1

988 RETURN

46583:DR =

Checksums

400 - $96DE
410 - $7721
420 - 4853
430 - $A1F2
440 - 30089
450 - $30BD
460 - $1402
470 - $3B76
480 - $C499
490 - $F4D1

500 - $3BFF
510 - $B6ED
520 - $480B
530 - $72D9
540 - $5646
550 - §83BB
560 - $739C
570 - $48B4
580 - $4083
590 - $94A8
600 - $5A41
610 - $6B6F
620 - $FAOD
630 - $6715
640 - $659F
650 - $32F3
660 - $667C
670 - $14DE
680 - $34B5
690 - $D346

100 - $86D4
110 - $BOA7
120 - $4FB5
130 - $65DF
140 - $EFCO
150 - $E6D6
160 - $D6B4
170 - 88194
180 - $FGAD
190 - $A6A3
200 - $66AA
210 - 3871
220 - $09BE
230 - $D16D
240 - $F4DD
250 - 8355
260 - SEEDO
270 - $7BSF
280 - 3007
290 - A3BC

300 - 81117
310 - $BB94
320 - $6CD5
330 - $283D
340 - SEAES
350 - $CC51
360 - $66B5
370 - $6F01
380 - $D7D6
390 - $53DB

700 - $F0O05
710 - $3198
720 - $99A5
730 - $C804
740 - $CIF9
750 - $33E5
760 - $9073
770 - $2034
780 - SAEBQ
790 - $D616
800 - $F9B1
810 - $EFSB
820 - $7E7C
830 - $FBBY
840 - $0407
850 - $AS7E
860 - $6492
870 - $0B86
880 - $6D65
890 - $C419

900 - $81D7
910 - $C500
920 - $2804
930 - $EBAS
940 - $0A05
950 - $A10C
960 - $2D42
970 - $8B3E
980 - $7842

%

The Best of Hardcore Computing Page 54

Learn to use and understand $trings with

Text Invaders

Applesoft string manipulation at first
seems a bit complex; however, with ex-
periance, it becomes perfectly logical and
simple. If you're in between these two ex-
tremes (total ignorance and total know-
how), then you understand that concatena-
tion sometimes is a chore, albeit a neces-
sary chore, especially when writing
business and educational software.

This game, Text Invaders, depends on
string manipulation. Certain characteristics
of the arcade version have been duplicat-
ed in this text-page pseudo-clone, includ-
ing the “Thump! Thump!"' of marching
invaders as they descend upon you. The
invaders also “‘march’ back and forth, their
“legs’ alternately slashes and inequality
signs “/ \ < >”. All this animation is
accomplished by tabbing and printing
strings.

The variable names were chosen to be
as explanatory as possible. Since Applesoft
only uses the first two letters of a variable
name, the names may be shortenad to just
two characters. However, be certain to in-
clude the variable suffix (%, $ or array no-
tation).

Text Invaders manipulates several
strings. The most complex of these is
called INVADER$(1). It is with this string
that we will see the use of all the string-
manipulating commands: STR$[n], VAL
[a], LEN[AS], MID$[H$,b,1], RIGHTS$[A$,b],
LEFT$[A$,b] and, of course, concate-
nation.

The program will be explained in five
steps.

Step 1. Introduction, Graphics and
Variables ;

Step 2. The Rhythm, March and Descent
of the Invaders

Step 3. Tank Commands and Motion

Step 4. The Invaders Attack

Step 5. The Tank Strikes Back

Step 1: Introduction & Initlal Graphics

This will set up the initial graphics and
let the player select a skill level.

The introduction, or “'skill choice selec-
tor,” is an example of an active user-proof
(except for ctrl C and reset) keyboard en-
try program. It will accept only what it is
looking for, flash an error message when
applicable and, while waiting for an entry,
display the choices available in an interest-
ing fashion. To do this, it does not use IN-
PUT or GET statements, which halt

By Bev Haight

program execution, but rather PEEKs the
keyboard (-16384) to see if a selection has
been made. If no selection has been made,
it goes about merrily flashing the next
choice and PEEKing the keyboard until an
entry has been made. If the entry is not
valid, an error message is flashed one let-
ter and one buzz at a time, yet quickly
enough for the entire message to be print-
ed and removed in one second. It does this
by using the MID$ function and a FOR-
NEXT loop.

The program sequence in Step 1 is:

A. Define variables (10000-10910).

B. Text Page Graphics are printed: The
Screen is whited out and inverse text is
printed [1100¢-110630], followed by normal
text on the top and bottom [11050-11070].
A "window" is made (POKEs 32 through
35, see the Applesoft Reference Manual)
and cleared (CALL-958) in lines
11100-11120. Flashing “‘bunkers’ or bar-
riers are printed, consisting of regular
slashes and back slashes (11200).

C. The player's skill level is requested
(12000-12090). While waiting for the an-
swer, lines 12050-1207¢ flash and buzz
across the printed choices, prompting the
player to choose. If the player chooses any-
thing other than numbers 1 through 5, the
error routine is activated, printing and buzz-
ing quickly across the top part of the graph-
ics field and vanishing (12080-12090).

D. The window is cleared (line by line)
of the skill prompts, leaving the flashing
bunkers intact (1210@), and the proper
number of invaders are created
(13000-13040) and printed in the window
(12210).

String concatenation appears first in line
10150 (BUNKERS$), and then in line 10900
where SPACES$ is created out of spaces.

In lines 13020 and 13030 the INVADER
strings are created. To change the appear-
ance of the invaders, you need only change
these lines. For example, if you want the
invaders to have different legs, change line
13030. If you want their hit points to be less
than 9, change |I$ to B or 5 or some other
number. WARNING: Do not make I$ larg-
er than a single character or the \“rogram
will not work! I$ must not be greater than 9.

Step 2: Rhythm, March and Descent

Now that the preliminaries are out of the
way, it's time to get down to a serious in-
vasion.

Step 2 consists of all the invasion con-
trols: the “‘thump! thump!”’ of their march
back and forth, down the screen and
toward and through the “'bunkers."

The invasion sequence, repeated over
and over, goes like this:

l. Select the gait of the invaders’ march
(1910).

2. Select the invaders’ direction of trav-
el (ITRAVEL%, 2010).

3. Determine the HTAB and VTAB value
(HINVADER%,VINVADERY%b) and clear old
invader strings from the window (going
right 2400-2420, or going left 2508-2520).

4. VTAB, HTAB and PRINT the invaders
(2410-2430), FRHYTHM is used as a flip-
flop switch to select which legs to print
(2950). FRHYTHM is sither 1 or -1. Adding
1 to each value results in either @ or 2;
hence the last part of line 2420: PRINT
INVADERS (FRHYTHM% + 1). Remem:-
ber: INVADERS$(0) is slashes and
INVADER$(2) is inequality signs.

5. The thumps are then added, depend-
ing again upon which type of leg is printed
(FRHYTHM%, 1508-1520). The two types
of thumps are created by PEEKing -16336
twice times the quantity 16 less the VTAB
of the INVADERS$(1). The only difference
between the two thumps is the interval
created by the addition or subtraction
process.

6. The whole process repeats itself. If the
invaders are too far right, they must march
left (2489/2), and if too far left, they must
go right (2510). If too low, then the game
must end (1000) and the player is given the
choice of beginning again or quitting
(21000-21030).

Step 3: March of the Text invaders

This is a very short step that gives com-
mand of the tank.

1. The keyboard is checked (1020)(100)
to see if:

a. The escape key is pressed, which me-
ans to start all over again (120).

b. The return key is pressed, which stops
all tank motion.

¢. The right arrow key is pressed, to go
right.

d. The left arrow key is pressed, to go left

2. Move the tank either right (200) or left
(300) or make it stand still (35@) by erasing
the old tank and printing a new one
(210-230).

3. Display the tank's hit power. This is

The Best of Hardcore Computing Page 55

a novel routine that uses the data state-
ments and then VTAB/HTABs each
character into a rectangular area that
measures five columns by five rows. The
result is a number from 9 to 1 printed in
' ogr Y#" alternately (400-450).

Step 4: The Invaders Attack

The sequence here is more difficult be-
cause it consists of numerous subroutines.
The most important of these is the Attack
Sequence itself which will be explained
first,

A. The attack itself begins (900) with a
random number between 1 and the num-
ber of original invaders, N% (between 4
and 8). This number times 4 plus 3 gives
the '‘centers’ of each invader in
INVADERS$(1). The old invaders are erased
and the random number, RAN®%, is
checked for validity.

B. That particular “center’’ is pulled out
of INVADERS$(1).

815 TEMP$ = MID$ (INVADERS$ (1),
RAN% + 1,1)

C. And turned into a number.

920 TEMP% = VAL (TEMPS$)

D. The number is decremented by one.

940 TEMP% = TEMP% - 1

E. Then turned back into a string.

TEMP$ = STR$ (TEMP%)

F. And put right back into INVADERS (1).

970 INVADERS$(1) = LEFTS (INVADERS$
(1), RAN%) + TEMP$ + RIGHTS$
(INVADER$ (1), LEN (INVADERS$(1)) -
RAN% - 1

G. If an invader is already dead, then this
step will get rid of its legs in almost the
sams way (980). Lack of hit power (and
therefore no more bombs to drop) is
another reason for an invader's demise
and disappearance. Later, in Step 5, this
same routine is used to decrement the in-
vaders when they're hit by missiles.

H. Condense the invaders by removing
all spaces on the right side (668) and the
left side (670), keeping the string compact
and changing the HTAB value ap-
propriately.

The next phase in Step 4 is the sequence
followed when the screen is examined in
order to determine if the invaders’ bombs
have hit anything.

The most important part here is, of
course, the actual routine that examines
the text screen memory. This is accom-
plished by using the SCRN (x,y) command
(see the Applesoft Manual), which normailly
returns the color code (0-15) of the x,y coor-
dinates (between @ and 39 for x, ® and 47
for y . However, since each text character
is composed of two such color codes, a for-
mula must be used that will return the text
character instead of the colors. The formula
given in the Applesoft Manual is:

CHR$ (SCRAN (x-1,2 *(y-1)) + 16 *
SCRN (x-1,2 *(y-1) + 1)
which will return the character at position

(xy)-

In this program a window has been used,
which causaes this formula to give an incor-
rect value, it is looking at the wrong spot
on the screen. Therefore, the x value must
be incremented by 1 (line 510) before pass-
ing the value to this subroutine (lines
12-29). Since the keyboard values are
PEEKed, the CHR$ function has been re-
moved. Here is what the program does:

A. Check the screen, has the bomb hit

anything?
1. Empty space... continue on... line 529.
2. A "I"... hit a missile... line 530.

3. Flashing slashes... hit the bunkers...
line 540.

4. Oh no, too low! Hit the dirtl... line 550.

5. Must have hit a tank!... lines 570-580.

B. Destroy whatever the bomb has hit.

1. The tank goes boom (13200-13290)!
This is the most complicated destruction
scene except for the way the invaders will
die {more on that in Step 5).

2. The bunker goes zap (850-89@)! This
scene simply buzzes while flashing from in-
verse to normal a few times.

3. The bomb hits the ground! This does
a short buzz and leaves a crater after the
screen flashes back and forth between text
page 1 and text page 2.

4, Your missile gets hit! The two vanish
in a noisy incandescence of slashes, let-
ter “I's and dashes.

Step 5: The Tank Strikes Back

Like the search routine used to find out
if the bombs hit anything, the missile
search routine also uses the SCRN func-
tion in lines 1@ and 20.

Did you shoot (line 158)? And if so, did
you hit anything? (Line 1050 takes you to
lines 5@ through 90.)

1. Hit nothing, so go on (line 55).

2. Hit your own bunker (line 60).

3. Hit a bomb (line 65).

4. Hit an invader

a. on the left side (75), so destroy it
from the left side (610).
b. on the right side (80), so destroy it
from the right side (620).
¢. in the middle (85), so destroy it from
the middle (630).
5. Hit the top of the playing area (line 99).
That’s it. Debug and enjoy!

IMPROVEMENTS

An Applesoft compiler was used to make
the program really zip along. And it did...too
quickly. The invaders’ descent should be
slowed down. | made them randomly
choose to move or stand still but still wig-
gle those skinny legs of theirs; that way you
don't quite know which way they’re going
to go.

Invaders BASIC listing

9 GOTO 10000

10 XXX = XX - 1:¥¥YX =2 * (YX - 1)

20 XKX = SCRN(XXX,YYX) + 16 * SCRN(
XX%,YYX + 1)1 RETURN

30 VTAB TVX: HTAB THX: PRINT * ' ::
RETURN

35 VTAB TVX: HTAB THX: PRINT "I" ;:
RETURN

4@ IF TVX > @ THEN GOSUB 9@: HTAB
THX: PRINT " '';

45 THX = HGX:TVX = VGX - 2: GOSUB
35: RETURN

50 IF TVX < 1 THEN RETURN

52 GOSUB 3@:TVX = TVX - 1: GOSUB 35:
IF TVX < 5 THEN GOTO 9@

55 XX = THX + 1:YX = TVX - 1: GOSUB
1@: IF XKX = 168 THEN RETURN

60 IF XKX < 127 THEN FOR A =1 TO 5:
GOSUB 30: GOSUB 153@: GOSUB 35:
GOSUB 153@: GOSUB 30: GOSUB
153@: NEXT A:TVE = TVX - 1:
GOSUB 30:TVX = @: RETURN

65 IF XKX = 171 THEN 800

7@ IF TVX < > VIX + 1 THEN RETURN

72 58% =1

75 IF XKX = 221 THEN GOSUB 600: RAX
= X% - HIX: GOTO 91@

B0 IF XKX = 219 THEN GOSUB 620: RAX
= X¥ - HIX - 2: GOTO 918

85 GOSUB 61@:RAX = XX — HIX - 1:
GOTO 910

90 VTAB TVX: HTAB THX: PRINT ' ' ::
VTAB TVX - 1: HTAB THX: PRINT
M§M:: FOR A = 1 TO 7:BU = PEEK
(NO): NEXT A: HTAB THX: PRINT
n s TVX = B: RETURN

10@ KEX = PEEK (KE): IF KEX > 12 7
THEN POKE ST,0

11@ IF DIX AND FSX < @ THEN KEX = 160

128 IF KEX = 155 THEN GOX = 1: GOTO

10000
150 IF KEX = 160 THEN AUX = 1: GOSUB
40

155 IF KEX = 141 THEN TT% = 3

160 IF KEX = 149 THEN TT% = RI¥X: DIX
= @: GOTO 200

170 IF KEX = 136 THEN TT% = LEX: DI%
= @: GOTO 300

198 ON TTX GOTO 200,300,350

200 HGX = HGX + 1: IF HEX > 36 THEN
HGX% = 36:TT% = LEX: RETURN

210 VTAB VGX: HTAB 1: CALL - 86 8:
VTAB VGX - 1: CALL - 848

220 VTAB VGX: HTAB HG¥ — 1: PRINT
n=ti-: INVERSE : PRINT POX;: NOR-
MAL : PRINT "='';

230 VTAB VGX - 1: HTAB HGX: PRINT
"I";: RETURN

300 HGX = HGX - 1: IF HGX < 3 THEN
HGX = 3:TT% = RIX: RETURN

350 GOTO 210

400 BX = 1: FOR A = 19 TO 23: FOR AA
=17T05

410 VTAB A: HTAB AA + 5

420 PIS = MIDS (POSCPOX),B%,1)

430 INVERSE

450 PRINT PIS;: NORMAL :BX = BX + 1:
NEXT AA,A: RETURN

500 IF INX = @ THEN 500

518 IVX% = IVX + 1:X% = IHX + 1:Y%
=Iv%: GOSUB 10

5208 IF XKX = 160 THEN 700

53@ IF XKX = 161 THEN 800

548 IF XKX = 92 OR XKX = 111 THEN 850

550 IF IVX > 17 THEN 750

The Best of Hardcore Computing Page 56

S7@ INVERSE : GOSUB 1320@:P0X = POX
- 1: IF POX = @ THEN 21000

SB0 VTAB YGX - 2: HTAB IHX:IHX = @:
PRINT 't s

59@ GOSUB 4@@: RETURN

600 FOR A = 0 TO 2: VTAB VIX + 1 :
HTAB XX — 1: GOSUB &38: VTAB
VIX: HTAB X% - 1: GOSUB 630:
HTAB X¥%: GOSUB 63@: HTAB XX + 1:
GOSUB 630: VTAB VIX + 1: HTAB XX
+ 1: GOSUB 63@: HTAB XX: GOSUB
630: NEXT

605 BPY = B: GOSUB 16@0: GOTO 648

610 FOR A = @ TO 2: VTAB VIX: HTAB XX
- 1: GOSUB 63@: HTAB XX - 2:
GOSUB 63@: HTAB XX: GOSUB 630:
VTAB VIX + 1: HTAB XX - 2: GOSUB
630: HTAB XX: GOSUB &3@: HTAB XX
= 1: GOSUB 63@: NEXT

615 BPX = 10: GOSUB 1600: GOTO 64 @

620 FOR A = @ TO 2: HTAB VIX + 1 :
HTAB XX - 1: GOSUB &3@: VTAB
VI%: HTAB XX - 1: GOSUB 63@:
HTAB XX - 2: GOSUB 63@: HTAB XX
- 3: GOSUB 630: VTAB VIX + 1:
HTAB XX - 3: GOSUB 63@: HTAB XX
- 2: GOSUB 63@: NEXT

625 BPX = @: GOSUB 160@: GOTO 640

630 PRINT ZA$(A);:X = PEEK (NO) +
PEEK (NO): RETURN

640 THX = B:TVX = @: GOTO 970

650 REM

660 IF MIDS (IN$(1), LEN (INS(1)) -
2,1) =™ " THEN FOR AA = @ TO
Z2:INSCAA) = LEFTS (INSCAA), LEN
CINSCAAR)) — 4): NEXT AA: IF LEN
(IN$C(1)) > 4 THEN GOTO 660

670 IF MIDS (IN$(1),4,1) =" " THEN
FOR AA = 0 TO 2:INSCAR) =" ' +
RIGHTS CINSC(AA), LEN (INS(AR))
= 5): NEXT AA:HIX = HIX + &4: IF
LEN (IN$C1)) > & THEN 678

69@ RETURN

700 VTAB IVX%: HTAB IH¥X: PRINT “'+'";:
VTAB IVX - 1: HTAB IHX: PRINT "
=2 RETURN

750 VTAB IVX - 1: HTAB IHX: PRINT "
"2 FORT=1T02

770 POKE - 16299,0: INVERSE : VTAB
IVX: HTAB IHX: PRINT "A".: GOSUB
153@: POKE - 16300,0

780 NORMAL : HTAB IHX: PRINT CHRS
(223);: GOSUB 1530

79@ NEXT T:IHX = @: RETURN

800 FOR BO = 1 TO 1@8:2Z = PEEK (NO)

810 VTAB IVX — 1: HTAB IHX — 1:
PRINT CHRS (22@);'"I'';'/":: VTAB
IVE: HTAB IHX - 2: PRINT
Mozf==Ita: YTAB IVX + 1: HTAB IHX
- 1: PRINT "/I''; CHR$ (22@) ;:2Z
= PEEK (NO)

820 VTAB IVX - 1: HTAB IHX - 1:
PRINT "'":;: VTAB IVX: HTAB IHX -
2: PRINT "':: VTAB IVX + 1: HTAB
IHX - 1: PRINT "" :: NEXT BO

830 FOR A =1 TO 10:2Z = PEEK (NO):
VTAB TVX: HTAB THX: PRINT "#";:
FOR B =1 TO 5: NEXT B : HTAB
THX: PRINT ' ":: NEXT A

840 TVX = B:THX = B:IvX = B:IHX = O:
RETURN

850 FORT =1 TO é: VTAB IVX -1 :
HTAB IHX: INVERSE : PRINT " ';:
VTAB IVX: HTAB IHX: PRINT "X'';:
GOSUB 1530

B6@ VTAB IVX — 1: HTAB IHX: NORMAL :
PRINT ' ";: VTAB IVX: HTAB IHX:
PRINT " '';: GOSUB 153@: NEXT

880 1HX = @

89@ RETURN

90@ RX = RND (1) » NX:RAX = RX * &4 +
3: IF LEN (INS{1)) <5 THEN VTAB
VIX: HTAB 1: CALL — 868: VTAB
VIX + 1: CALL - 868: RETURN

9@5 IF RAX > LEN (IN${1)) THEN
RETURN

910 IF RAX < @ THEN RAX = -~ RAX

915 TES = MIDS (INS(1) ,RAX + 1,1)

920 TEX = VAL (TE$): IF TE$ =" "
THEN 900

938 IF TEX > 9 THEN TEX = TEX / 10:
GOTO 930

935 IF SSX THEN IF TEX < = POX THEN
TEX = 1

940 TEX = TEX - 1:QIX = IVX + 1:T E$
= STR$ (TEX):QHX = RAX + HIX: IF
TEX <1 THEN TE$ = " ©

945 IF SSX THEN 9608

958 IVX = VIX + 2:IHX = RAX + HIX :
GOSUB 700: VTAB VIX: HTAB IHX:
INVERSE : PRINT TE$;: NORMAL

960 ssX = @

970 INS$(1) = LEFTS (INS(1),RAX) +
TE$ + MIDS (INS(1),RAX + 2)

988 IF TE$S =" ' THEN FOR AA = @ TO
2:INSCAA) = LEFTS (INS (AA),RAX
= 1) + """ + MIDS (INSCAA),RAX +
3): NEXT AA

990 GOTO 650

180@ IF VIX = 14 THEN 21000

1218 FOR RH = @ TO 100 STEP VIX * 10

1020 GOSUB 10@: REM <CHECK KEYBOARD>

1048 GOSUB 5B@: REM <MOVE INVADER
BOMBS>

1050 IF AUX THEN GOSUB 5@

1@80G NEXT RH

1890 GOTO 2008

1500 FOR A = @ TO 16 — VIX: IF FRX >
@ THEN 1520

151@ ZZ = PEEK (NO) - PEEK (NO) :
NEXT : RETURN

1520 2Z = PEEK (NO) + PEEK (NO) :
NEXT : RETURN

1530 2Z = PEEK (NO): RETURN

1600 PTX = BPX * SKX + POX + PTX

1610 VTAB 19: HTAB 3@: INVERSE :
PRINT "";: HTAB 3@: PRINT PTSX;:
NORMAL : RETURN

1999 REM <INVADER MOVEMENT>

2000 IF LEN CIN$(1)) < 5 THEN 20000

2010 IF ITX = LEX THEN 2500

2400 HIX = HIX + 1: IF HIX > 37 - LEN
CINS(1)) THEN ITX = LEF TX: VTAB
VIX: HTAB 1: CALL - B68: IF SKX
<3 THEN VIX =V IX + 1

2410 VTAB VIX: HTAB 1: CALL - B68:
VTAB VIX + 1: HTAB 1: CALL - 868

2420 VTAB VIX: HTAB HIX: PRINT I
N$(1): VTAB VIX + 1: HTAB HI X:
PRINT INS(FRX + 1);

2430 FRX = - FRX: GOSUB 150@: GOTO
1000

2500 HIX = HIX - 1

2510 IF HIX < 2 THEN VTAB VIX: HTAB
1: CALL - 848:1TX = RIX:VIX =
VIX + 1

2520 GOTO 2410

10@0@ SPEED= 255: NOTRACE : NORMAL :
TEXT : HOME

10100 NO = - 16336:ST = - 16368 :KEY

= - 16384

10110 HIX = 3:VIX = 5:1TX = 1:1$ =
I|9"
10120 RIX = 1:LEX = 2:TRX = 2:FR% =

-1

10130 POX = 9:TTX = 2

10148 HG% = 19:VG% = 17:DI% = 1:A GX
= 1

10150 BUS = CHRS (220) + CHRS (239)
+ CHRS (228) + CHRS (239)

10160 IVRAYX = B:IHRAYX = :UFOX = 1

18170 THY = 2

10180 ZAS(@) = "#':ZA$(1) = ":":Z
AS(2) = n

10500 DATA™ H#HH Ri AHER RAANR HE HUE v

18510 DATA" H#H #H RR RE BR "
18520 DATA"'HHHN #H RER AR BEHART
18530 DATA"#### AR AnR HiniRR "

1054BDATA "#wx wadk dhkikik *k Hekt?

10550DATA Midkhkkdk *kkk hhkhkx 1t

10560 DATA'HN #E RERR HE W4 By

10570 DATA"RRR#R HR KK H¥ K¢ v

10580 DATA' #H¥ Ri B% WHB HE HH Hun "

10550 DATA™ RA# R& HR HHHE ¥R #0

106@8 IF GOX THEN 11000

10800 ERR$ = "'CHOOSE A NUMBER FROM 1
TO 5"

109808 FOR A = 1 TO 40:SPACES =
SPACES + ' "': NEXT A

10910 FOR A = @ TO 9: READ POS(A):
NEXT A

11000 INVERSE : FOR A = 3 TO 24:
VTAB A: HTAB 1: PRINT SP$;: NEXT

A

11810 VTAB 19: HTAB 24: PRINT
SCORE:"

11828 VTAB 19: HTAB 2: PRINT “'TANK":
PRINT ""VALUE": HTAB 4: PRINT
"IS'': HTAB 3: PRINT "-=>";

11@30 VTAB 22: HTAB 14: PRINT
"SOFTKEY TEXT INVADERS 2.@';

11850 NORMAL

1106@ VTAB 24: HTAB 2: PRINT

<~ LEFT™; = HTAB 15: PRINT "RETURN =
STOP";: HTAB 33: PRINT
NRIGHT->'";

11078 VTAB 1: HTAB 2: PRINT "'SPACE =
SHOOT!™;: HTAB 26: PRINT “ESC =
NEW GAME';

111@@ POKE 32,1: POKE 33,38: POKE
34,3: POKE 35,16

11110 VTAB 3: HTAB 1: CALL - 95 8

11120 VTAB 3: HTAB 1: INVERSE :
PRINT RIGHT$ (5P$,38);

11200 FLASH : FOR A = 12 TO 14: VTAB
A: HTAB 4: PRINT BUS;: HTAB 13:
PRINT BUS;: HTAB 22: PRINT BUS;:
HTAB 31: PRINT BUS:: NEXT A:
NORMAL

11210 GOSUB 400

11220 GOsSUB 21@

11230 GOX = @

12000 VTAB 5: HTAB 7: PRINT "WHAT IS
YOUR SKILL LEVEL?';: VTAB 7:
HTAB 92 PRINT "1....2....
3....4....5";: VTAB 9: HTAB 14:
PRINT "< PICK ONE >'";

—continued on page 61—

The Best of Hardcore Computing Page 57

Getting Into Hires with

Zyphyr Wars

Zyphyr Wars 2.0 is an Applesoft hi-res
“shoot the invaders” type of arcade game.
This particular one is not only a complete
game in itself, but it is also a **core” pro-
gram that can be easily altered and adapt-
ed to demonstrate the ease with which
such games are created. (It is an egotisti-
cal myth that the writing of computer
games is a difficult artl) In addition, this
game has several tricks that allow it, and
perhaps others, to play more quickly.

Playing the game

A city is built at the bottom of the screen,
and the player’s ship, a satellite, is drawn
at the top. Ten UFOs, or Zyphyrs (Zs) ap-
pear between the ship and the city skyline
below. The Zs must be destroyed before
they destroy the ship and the city. If the Zs
succeed in creating deep craters, the game
ends. The Zs zap the city and the ship with
death rays, and the ship shoots back with
rays of its own. But because the player's
ship is shooting down at the Zs, a miss will
destroy part of the city, and if there are too
many misses, the game ends quite dramat-
ically.

When the first ten Zs are destroyed, the
player advances to the next skill level and
another ten Zs appear. Each higher level
will subject the player's ship to more fre-
quent attacks. If the player’s ship is hit, it
plummets to the ground, destroying
whatever is beneath it. There are only a few
ships provided to the player.

Special features

This program is a fast single-player game
with some interesting features. First, in-
stead of using a hi-res text/character gener-
ator (although it could be adapted to use
one), this program flashes the hit points by
switching screens (text and hi-res) in rapid,
repetitive bursts that give the illusion of text
on the hi-res page. Second, the Zs, appear
to zip across the screen much faster than
is really possible. The illusion of speed is
created by connecting their old and new
positions with a line and then adding a
“'zip" sound ('‘Zyphyr" is a close approxi-
mation of this zipping sound). Third, there
is an entire cityscape to protect rather than
simple bunkers to hide behind. And, final-
ly, this game uses shape tables. That is,
the buildings consist of “shapes” stacked
up in columns. The Zs are also conglomer-
ate shapes (allowing the programmer to

By Bev Haight

change their shapes). But the players’s
ship is a single shape. The shapes are
POKEd into memory page 3 ($300 hex or
768 in decimal) along with a short routine.
DRAW and XDRAW are used extensively,
along with HPLOTSs, in order to demon-
strate the various hi-res graphic possibili-
ties. (For example, all HPLOTs could be
turned into XDRAWSs.)

Paddles Only

When the ship is moved back and forth,
it does not have to step across the screen
smoothly. Using absolute paddle positions,
the ship *'materializes” at whatever value
the paddle happens to be turned to when
its value is checked by the program. That
means that the player can also make the
ship zip from one side to the other, a neces-
sary feature if the player wishes to zap the
Zs.

Rays, Not Bombs
Don't move the missiles or bombs be-
cause that slows everything down. Instead,
HPLOT or XDRAW lines (rays), giving the
appearance of an immediate hit or miss.

Hit or Miss?

The program does not need o go
through a long search to determine if a ray
has hit or missed. The program only per-
mits the Zs to appear directly over the
center of each column of buildings, and
then only one Z per building. The player’s
ship moves across in a similar fashion, ap-
pearing only over the center of each build-
ing. Therefore, the only necessary search
is for a Z in the same column the player’s
ship is in.

Sound Effects
There are a variety of noises used in this
game, including a soft “‘zip: sound. Another
favorite sound routine may be used
instead.

The Program
The 40 columns (representing the 40-
character-column text format) must be
reserved by dimensioning them at the very
start.

COL%(40) This integer variable array
will store which Z is above which building
(column). If empty, it will be equal to zero.

HEIGHT(40) This array will store the

height of the building. When struck by a ray
or a falling ship, the building will diminish
in height until a crater is dug into the
ground.

XUFO%(10), YUFO%(10) Thesse arrays
store the X and Y positions of all ten Zs.

To keep track of the player’s ship, there
are two variables:

PN%, the New Paddle position,
P0O%, the Old Paddle position.

Hi-Res Text Trickery

After the variables are defined, the game
itself is set up in lines 12000 through 12090.
The Earth is HPLOTted (EARTH = 152) on
hi-res page 1 (13000-13030). Then, on text
page 1 (13000-13130), it sets the bottom of
the text window to 19 (13180). That means
that the four rows seen below the hi-res
screen in the mixed-mode are actually out-
side of the window. This will pose a small
problem later when you try to print below
the window. The ground i$ continued into
the text page. This gives the illusion of hav-
ing text on the hi-res page, an effect that
will later be enhanced.

The city shapes up

Next, the buildings are calculated and
XDRAWN (14000-1402@). Only the inner 38
columns are used for buildings (14000). A
random height is chosen and subtracted
from EARTH. (Remember that as the
height of the building increases, the actu-
al Y value gets LOWER, not higher be-
cause the Y value at the very top of the
screen is zerol)

Now, one of the five building shapes
from the shape table is chosen at random
(14840). The five shapes in the table show
a window (or windows) at various positions.
When stacked together (14060), something
resembling a modern building is created.
Shape #6 (see diagram) is a plain and sim-
ple vector dash, but at SCALE=7 itis a
solid line (14@50). This line separates the
building levels.

Stars In four colors

After the buildings are up, stars are
drawn from top to bottom (14100). Because
stars are just plotted points (1413@), color
is inevitable even when specifying
HCOLOR =3 (white) or HCOLOR = 7
(white). By alternating between the two
types of white, all four colors are plotted
(green, blue, violet and red).

The Best of Hardcore Computing Page 58

The Zyphyrs

The Zs are calculated next. Each will ap-
pear on a specific row corresponding to a
text page row, for reasons to be discussed
later. Only one Z per column and per row
is permitted (15010). COL%(n) is then filled
with the row number of the Z that occupies
it.

Ready to play

The game is now ready to play. The text
displays are printed. in a unique way so
that they appear below the text window.
Normally, with a string of more than one
character, only the first character would be
printed outside the window; the rest would
appear inside. Therefore, a long string
must be VTABbed and HTABbed into place
one character at a time.

The main game sequence is controlled
in lines 100 to 190, a loop with GOSUBs.
This allows for the addition of other rou-
tines. For example, this could be made into
a two-player game with a tank or gun mov-
ing along the bottorn that shoots upward
at the other player’s ship or at the Zs.

GOSUB 1000

The first GOSUB moves the ship in
response to the paddle. It draws and
redraws the ship. But drawing and redraw-
ing anything on a single hi-res page will
makae it flicker. So instead of using two en-
tire hi-res pages to remove the flicker ef-
fect (which uses up too much memory),
remove the flicker by allowing the program
to erase the ship and redraw it only when
the position of the ship must be changed
(1100).

GOSUB 2000

The second GOSUB is more complex
and is composed of its own series of
GOSUBs. it moves the Zs, but only one at
a time and at random. To move them, the
program must first check if the random Z
it selected still exists (it could have been
shot). If it doesn’t exist, then that’s the end
of that. If the Z is still around, the program
then generates another random number
and checks if that particular column is emp-
ty. if it isn’t, then the program runs off to
a routine that allows the Z to shoot down
at the city. But if the column is empty, the
program checks to see if the Z should shoot
at your ship. The chances of it shooting at
you will increase as you ascend the vari-
ous levels (by wiping out all ten Zs).

Ten zipping Zyphyrs

Finally, the Z gets to move. It dsletes it-
self from the old COL% and places its num-
ber in the new COL%. It changes its XUF%
value accordingly. Now comes the illusion
of movement, the "'zip."” A FOR-NEXT loop
is initiated that goes from 3 to 4 because
it determines the HCOLOR (white is 3 and
black is 4). Drawing and undrawing the Z

is a GOSUB inside a GOSUB. And, instead
of storing a Z shape in the vector table a
more flexible but slower format (for varie-
ty) was chosen that permits easier altera-
tion of the Z shape (200-260) without
changing the shape table itself.

GOSUB 3000

The third main GOSUB is conditional
and depends on whether the paddie but-
ton is depressed at the time that the rou-
tine checks it. If it isn't depressed, the
program loops back on itself. If it is
pressed, that means that the ship is shoot-
ing. The program checks to see if a Z oc-
cupies the column. If so, the Z vanishes
and U% (UFO counter) is raised by one.
If U% is over 8, a new level has been
reached and ten new Zs are created. If U%
is not over 9, any building below will be
completely wiped out and your score will
be decremented by a thousand points.
When the player accumulates a negative
100,000 points, the game ends.

Switching screens

When a Z is hit, the hit points are flashed
in the same place where the Z expired.
That effect is accomplished by switching
screens rapidly (9030-9080). In this way,
one can project text on the hi-res page for
brief moments without using a character (or
block-graphics) generator.

Conclusion

This version is small enough to fit com-
fortably beneath hi-res page 1. However,
if you add any more routines or remarks,
consider loading it above hi-res page 1 to
avoid wiping out the tail end of your pro-
gram when you run it. Use a loader pro-
gram similar to the following:

10 TEXT: HOME: POKE 103,1: POKE
104,64: POKE16384,0: PRINT
CHR$(4)"RUN ZYPHYR WARS"”

Also, if an Applesoft compiler is availa-
ble, try compiling it to make it more
challenging.

BASIC listing starts here

1 REM %% START OF PROGRAM #

2 TEXT : HOME : HGR

3 REM ZYPHYR WARS COPYRIGHT 1982
SOFTKEY PUBLISHING P.0.BOX 44549
TACOMA, WA 98444

10 DIM HEIGHT%(4@), XUFOX(1D),
YUFO%¢10), COLX(4®): GOTO 10000

99 REM MAIN GAME SEQUENCER

100 GOSUB 1000

118 GOSUB 2000

12@ IF PEEK (B1) > 127 THEN GOSUB
3000

198 GOTO 100

199 REM DRAW ZYPHYRS

200 ROT= @: XX = XUFOX%(2) * 7: Y% =
YUFO%(Z): IF Y% = @ THEN RETURN

205 SCALE=1: DRAW 6 AT XX+3, Y% - 2

210 SCALE=5: DRAW & AT X%+1, Y% - 1

22@ SCALE= 1: DRAW 5 AT XX, YX

225 SCALE=11: DRAW &6 AT XX-2, YX + 1

230 SCALE=13: DRAW 6 AT XX-3, Y% + 2

235 SCALE= 7: DRAW 6 AT XX, YX + 3

248 SCALE= 1: DRAW 5 AT X%, YX + &4

250 RETURN

26@ XX = XUFOX(COLX(PNX)) » 7: YX =
YUFOX(COLXC{PNX)): ROT= @: GOTO
205

299 REM BUZZ!

300 FOR 5 =1 TO 3: N = PEEK (BUZZ):
NEXT : RETURN

310 FOR S = 1 TO 1@: N = PEEK (BUZZ):
NEXT : RETURN

320 N = PEEK (BUZZ) - PEEK (BUZZ):
RETURN

349 REM DISPLAY GUNS

350 HTAB 3: GUNS = "'<'" + STR$ (G
UN%) + ">"': INVERSE : VTAB 21:
FOR A =1 TO LEN (GUN$) : PRINT
MIDS (GUNS, A, 1);: NEXT :
NORMAL : RETURN

359 REM DISPLAY LEVEL

360 VTAB 21: HTAB 35: LEVELS = " (" +
STR$ (LEVELX) + *)'': INVERSE :
FOR A =1 TO LEN (LEVELS$) :
PRINT MID$ (LEVELS, A, 1);: NEXT
: NORMAL : GOSUB 5300: RETURN

399 REM DRAW RAY

400 ROT= 16: SCALE= 3

410 HCOLOR= 3: FOR A = B8 TO TYX STEP
TYX / 1@: DRAW & AT TXX, A: POKE
6, A: POKE 7, 3: CALL 768: NEXT

420 HCOLOR= @: FOR A = B TO TYX STEP
TYX / 1@: DRAW 6 AT TXX, A: NEXT

44@ RETURN

549 REM LEVEL COUNTER

55@ UX = UX + 1: IF UX > 9 THEN UX =
@: LEVELX = LEVELX + 1: GOSUB
15000

560 RETURN

599 REM ZYPHYR SHOOTS

600 UXX = XUFOX(Z) = 7 + 3: UYX =
YUFOX(Z): ZXX = XUFOX(2Z): ZHX =
HEIGHTX{ZXX): IF SFX > @ THEN
SFX = @: GOTO 660

610 FOR AA = 3 TO 4: HCOLOR= AA:
HPLOT UX¥, UYX TO UXX, ZHX: NEXT
: GOsus 1000: GOSUB 5100:

620 GOsSUB 900

640 HEIGHTX(ZXX) = ZHX: RETURN

650 UXX = PNX » 7 + 3: UYX = 7: ZXX =
Pﬂg: ZHX = HEIGHTX(ZXX): GOTO
62

660 SCALE= 3: ROT= 16: ZHX = @: IF
PNX = ZXX THEN ZHX = 5

670 FOR AA =3 TO 4: HCOLOR= AA:
HPLOT UXX, UYX TO UXX, ZHX:
GOSUB 320: NEXT : GOSUB 5200:
GOSUB 30@: IF ZHX = 5 THEN GOTO
700

630 RETURN

699 REM SATELLITE FALLS

700 ROT= @: SCALE= 1

71@ HCOLOR= @: DRAW 8 AT PNX » 7 , 5

720 ROT= 32: FOR A= 0 TO
HEIGHTX(PNX) STEP 2

730 FOR AA =1 T0 2

740 YDRAW B AT PNX * 7 + 7, A: POKE
6, A: POKE 7, 6: CALL 76B: N =
PEEK (BUZZ)

75@ NEXT : NEXT : GUNX = GUNX - 1 :
GOSUB 50@@: IF GUNX = @ THEN 850

799 REM GROUND EXPLOSION

800 HCOLOR= @

The Best of Hardcore Computing Page 59

810 IF HEIGHTX(PNX) > = EARTH THEN
FOR AA =1 TO 2: FORA =2 TO &:
SCALE= 3 * A: FORR =0 TO 20
STEP 2: FOR RR = - 1 TO 1 STEP 2:
ROT= 112 - R * RR: XDRAW & AT PNX
% 7 + 3, EART H: NEXT : N = PEEK
(BUZZY: NEXT : NEXT : NEXT :
GOosue 3508

819 REM WHOLE BLDG. GONE

82@ FOR AA = HEIGHTX(PNX) TO EAR TH
STEP 2: HPLOT PNX * 7 -1 , AA TO
PNY * 7 + 7, AA: HPLOT PNX 7 -
2, AA-1TOPNX *7 + 8, AA - 1:
N = PEEK (BUZZ): NEXT

830 HEIGHT%(PNX) = EARTH: GOSUB 350

84@ ADD = - 1008 *~ LEVELX: GOSUB
9B2@: RETURN

849 REM END OF GAME

B5@ A$ = "' END OF GAME !": FOR B =1
TO 15: FOR AA = 1 TO B: VTAB 1@:
HTAB 13: PRINT LEFT$ (A$, B)

860 POKE - 16303, @: GOSUB 31B: POKE
- 16304, @: NEXT AA: A = B * 13:
GOsSUB 5300

870 NEXT B: TEXT : VTAB 1: HTAB 10:
PRINT "ANOTHER GAME? <Y> <N> "';

880 GET AS$: IF AS = "Y' THEN RUN

890 HOME: END

899 REM BUILDING LOSES A LEVEL

990 FOR L = 1 TO LEVELX: HCOLOR= @:
ROT= @

910 SCALE= 7: DRAW 6 AT ZXX » 7, ZHX
- 1: GOSUB 320

920 SCALE= 9: DRAW & AT ZXX * 7 -
1,ZH%: GOSUB 320

930 HCOLOR= 5: SCALE= 7: DRAW 6 AT
IX% * 7,ZHX + 1

94@ ADD = - 10 * LEVELX: GOSUB 902@:
ZHY = ZH% + 2: IF ZHX < EARTH
THEN NEXT: RETURN

95@ IF ZH% > EARTH + & THEN ZHX =
EARTH + 43 CC =CC+1: IFCC>9
THEN GOSUB 6008

94@ ADD = - 20 * LEVELX: GOSUB 9
B20: RETURN

999 REM MOVE SATELLITE

1800 PNX = PDL €1) / 5+ 1: IF P NX >
38 THEN PNX = 38

1058 ROT= @: SCALE= 1

11@8@ IF PNX < > POX THEN HCOLOR= 0:
DRAW 8 AT POX * 7,5

120@ HCOLOR= 3: DRAW 8 AT PNX * 7,5

1300 POX = PNX

140@ RETURN

1999 REM MOVE ZYPHYRS

2008 Z = RND (1) = 16 + 1

2850 IF YUFO%(Z) < 1 THEN RETURN

2180 Q% = RND (1) = 37 + 1

2200 IF cOLX%(QX) > @ THEN GOTO 600

2300 X1% = XUFOX(Z) = 7: X2X = QX » 7

2400 IF RND (1) * 1@ < LEVELX THEN
GOSUB 10@0: SFX% = 1: GOSUB &B0

2500 C =5

2608 IF X1%X > X2%X THENC = - C

2700 FOR AA =5 TO & STEP - 1: HCOLOR
= AA: HPLOT X1%,YUFOX(Z) TO
X2%,YU FOX(Z): NEXT: GOSUB 1000:
GOSUB 5400

2750 COLXCXUFOX(Z)) = @

2800 HCOLOR= @: GOSUB 20@: XUFOX(Z)
= @¥: HCOLOR= 3: GOSUB 20@

2900 COLX(QX) = Z: RETURN

2999 REM SATELLITE SHOOTS

3000 TXX = PNX * 7 + &4

3018 IF COL%(PNX) = @ THEN TYX =

HEIGHTX(PNX) - 2: GOSUB 40@:
HCOLOR= @: GOSUB 82@: RETURN

3020 TYX = YUFOX(COLX(PNX)): GOSUB
40@: HCOLOR= @: GOSUB 260

3030 YUFOXCCOLX(PN%)) = @: COLX(PNX)
= @: GOSUB 900@: GOSUB 55@:
RETURN

4999 REM SOUND OF DESTRUCTION

5@@@ FOR A = 1 TO 1@: POKE &, RND (1)
#* 5@ + 1: POKE 7,250: CALL 768:
NEXT: RETURN

5100 FOR A = 100 TO 20@ STEP 20:
POKE 6,A: POKE 7,2: CALL 76 B: N
= PEEK (BUZZ): GOSUB 10@@: NEXT:
RETURN

5200 FOR A = 200 TO 250 STEP 10@:
POKE 6,A: POKE 7,4: CALL 768:
NEXT: RETURN

5330 FOR AA = 251 TO 1 STEP - 1 B:
POKE 6,A: POKE 7,5: CALL 768:
NEXT: RETURN

S40@ FOR A = 1 TO 3@ STEP 3: POKE
é,A: POKE 7,2: CALL 768: NEXT:
RETURN

5999 REM CRATER COUNTER

6008 cC = @: FORI =1 TO 38

601@ IF HEIGHTX(I) < EARTH THEN 6890

6058 cC = CcC + 1

6060 IF CC > 5 THEN GOSUB 8@0@: GOTO
850

6090 NEXT: RETURN

8000 FOR B = 1 TO 10: IF YUFOX(B) < 1
THEN 8050

B@1@ HCOLOR= 1: HPLOT XUFOX(B) * 7 +
4, YUFOX(B) TO 140,99: GOSUB 5400

8050 NEXT B: SCALE= 5@: FOR A =0 TO
64: ROT= A: XDRAW & AT 14@,90:
NEXT A

8099 REM BIG BOMB

8100 FOR A =1 TO 50

8110 HCOLOR= RND (1) » 5 + 1

8120 X = RND (1) * 280: Y = RND (1) *
19@

8130 HPLOT 140,90 TO X,Y

8140 POKE 6,A: POKE 7,3: CALL 768

B15@ NEXT A

8190 RETURN

8999 REM <DISPLAY SCORE>

9Pd@ HOME: FUFOX = 1

9010 ADD = LEVELYX * 1@@: VTAB TYX /
8 + 1: HTAB PNX: PRINT ADD

9020 PTS = PTS + ADD: SC$ = STR$
(PTS): VTAB 21: HTAB 17: INVERSE

903@ FOR A = 1 TO LEN (SC$)

9P4d IF FUFOX THEN POKE - 1630 3,0:
N = PEEK (BUZZ)

9@5@ PRINT MIDS (SC$,A,1);

9070 POKE - 16304,0

9@8@ NEXT: PRINT ''': NORMAL: IF PTS
;56 100000 THEN GOSUB 8@@@: GOTO

9093 HOME: FUFO% = @: RETURN

9999 REM INIT VARIABLES

180@@ EARTH = 152: LEVELX = 1: GUNX
=5: PT§=0@: CC=0

10810 BUZZ = - 16336: KEY = - 16384:
KBOARD = - 16368: B1 = - 16286

10020 HC = - 1

10830 2 =1

1007@ G$ = CHRS (7) + CHRS (7)

10080 SCALE= 1: ROT= @

10090 IF AGAIN > @ THEN 12000

1@10@ DATA 166,7,164,6,173,48,19
2,136,208,253,202,208,245,96 ,0

18999 REM SHAPE TABLE

11000 DATA 9,0,20,0
,0,37,0,41,0,4

,24,0,29,0,33
3,0,45
110108 DATA 77,45,45,

2

@,45,0,0,0

")

11@2@ DATA 45,9,45,5

11030 DATA 45,77,45

11848 DATA 45,109,

11@5@ DATA 77,77,5,0

11868 DATA 5,0

11070 DATA 32,0

11880 DATA 44,44,53,54,46,36,36,
45,46,54,0

1109 DATA -1

11100 START = 768

1111@ MEM = START

111208 READ QUANTITY

11130 IF QUANTITY < @ THEN 11200

11140 POKE MEM,QUANTITY

11150 MEM = MEM + 1

11160 GoTO 11120

11200 POKE 232,15: POKE 233,3

11999 REM SET UP GAME

12000 Gosus 13000

12010 6OSUB 14000

12020 GOSUB 14100

12030 cosuB 15000

12040 Gosug 35@

120890 GOTO 100

12999 REM MAKE EARTH

13000 HCOLOR= 3

13010 FOR A = EARTH TO EARTH + 1 @

13020 HWPLOT @,A TO 279,A

13030 NEXT

13180 INVERSE

1311%BF0R A=21T023: FOR AA=1T0
&

13120 VTAB A: HTAB AA: PRINT " ']

13130 NEXT: NEXT

13148 VTAB 23: HTAB 12: PRINT
" > ZYPHYR WARS! <'';: NORMAL :
VTAB 24: HTAB 3: PRINT "COPY

RIGHT 1982 BY SOFTKEY PUBLISHING";

13180 POKE 35,19

13198 RETURN

13999 REM CALCULATE BLDGS

14000 FOR A = 1 TO 38

1401@ HEIGHT = (RND (1) + 2@) * 2

14020 HEIGHTX(A) = EARTH - HEIGHT

1403@ FOR B = EARTH TO HEIGHTX(A)
STEP - 2

14040 RX = RND (1) * 5 + 1

14@50 SCALE=T: XDRAW 6 AT Ax7,B-

14060 SCALE= 1: XDRAW RX AT A * 7,B

14@7@ POKE 6,B: POKE 7,5: CALL 7 68

14890 NEXT : NEXT : RETURN

14099 REM DRAW STARS

141@@ FOR A = @ TO EARTH

14110 HC = = HC: HCOLOR= 3: IF HC <
@ THEN HCOLOR= 7

14120 STAR = RND (1) * 279 + 1

1413@ HPLOT STAR,A

14140 POKE 6,A + 1: POKE 7,9: CALL
768

1415@ NEXT

14190 RETURN

14999 REM CALCULATE UFOS

1500@ FOR A =1 TO 1@

15010 T% = RND (1) = 37 + 1: IF
COLX(TX) > @ THEN 15010

15@2@ XUFOX(A) = TX

15030 YUFOXCA) = A *x B + 12

15040 HCOLOR= 3:Z = A: GOSUB 200

15050 COLX(TX) = A

1506@ NEXT

15@90 GOSUB 36@: RETURN

.0
@
.0

The Best of Hardcore Computing Page 60

Zyphyr Wars Checksums

1 - $97CE
2 - BAFCY
3 - B2A5F
10 - $51D9
99 - $0A89
100 - 391A7
110 - $C2C8
120 - $9CB5
190 - §2D28
189 - $4FFD
200 - $EBDE
205 - $5803
210 - $AA9B
220 - $B03B
225 - $1155
230 - $C568
235 - $CFD3
240 - S0E6A
250 - $EB33
260 - $5481

299 - $389D
300 - $CA1D
310 - $DA6G3
320 - $5D5F
349 - S0EDB
350 - $297D
359 - $EC52
360 - $B364
399 - $E138
400 - $E3AD
410 - $392C
420 - $7D58
440 - $834C
549 - $4694
550 - $2B40
560 - $6C25
599 - $3BC8
600 - $11CF
610 - $3556
620 - $A89B

640 - $9701
650 - $5F7F
660 - $487B
670 - $1590
680 - $6C3F
699 - $F952
700 - $6445
710 - $9FDD
720 - $B4F3
730 - 39B74
740 - $372A
750 - 8CA21
799 - $3D4B
800 - 4182
810 - 80997
819 - $FBAG
820 - $5C05
830 - $DA51
840 - $SFA1E
849 - 33648

850 - $2016
860 - $0105
870 - 82193
880 - $428C
890 - $CBO1
899 - $E578
900 - $F24F
910 - $80CF
920 - $01F2
930 - $1374

940 - 34651
950 - %4271
960 - $FBOF
999 - $134E
1000 - $6C31
1050 - $04A3
1100 - $81A7
1200 - $73DC
1300 - $3E0D
1400 - $904D

- $7B6D
- $1F15
- $E52E
- $2912
- $DE1S
2300 - $2833
2400 - $7DEQ
2500 - $92DB
2600 - $A93B
2700 - $9717
2750 - $D059
2800 - $8677
2900 - $76EC
2998 - $9091
3000 - $5F7A
3010 - $C658
3020 - $2689
3030 - §FD18
4999 - $10BE
5000 - $7934

5100 - $1527
5200 - $3BE2
5300 - §4870
5400 - $8C2A
5999 - $C8CF
6000 - $CDB1
6010 - $2D62
6050 - $EGFB
6060 - $2798
6090 - $F3DOD
8000 - $BC47
8010 - $D4D6
8050 - $4832
8099 - $B4DD
8100 - $C822
8110 - $6A0S
8120 - $4B1D
8130 - $BCBY
8140 - $8EBC
8150 - $BBF7

- $9372
- $5A9C
- $BOAG
- $FD6D
- §7CB6
- $C38F
- $6E93
- $A095
- $6820
- $7BA3
9090 - 3CAFA
9999 - §90F1
10000 - $8F23
10010 - $9429
10020 - $4A27
10030 - $A70D
10070 - 3DD68
10080 - $F066
10090 - $CAS52
10100 - $F45C

1999
2000
2050
2100
2200

8190
8999
9000
8010
9020
9030
9040
9050
8070
8080

10999 - $A2FA
11000 - $F4EQ
11010 - $47E6
11020 - $A154
11030 - $0816
11040 - $2DE9
11050 - $3969
11060 - $482B
11070 - $1897
11080 - $9A13
11090 - $0008
11100 - $2489
11110 - $CO6E
11120 - $33A8
11130 - $301F
11140 - $1F18
11150 - $86DF
11160 - $81B2
11200 - $BD3A
11999 - $BE1B

12000 - $3EM1
12010 - $9CA6
12020 - $2423
12030 - $8431
12040 - $2C44
12090 - $669A
12999 - $10CC
13000 - $12AA
13010 - $FBOD
13020 - $DC52
13030 - $9DC4
13100 - $6D53
13110 - $5CA3
13120 - $8F5E
13130 - $D4A1
13140 - $80FA
13180 - $1F4F
13190 - $5DD9
13999 - $207D
14000 - $FD12

14010 - $9763
14020 - $F31D
14030 - $945B
14040 - $3B7C
14050 - $9F58
14060 - $9F3B
14070 - $5F79
14090 - $2B71
14099 - $67A4
14100 - $D6BF
14110 - $13EE
14120 - $9AED
14130 - $0158
14140 - $3943
14150 - $6882
14190 - 58648
14999 - §5E78
15000 - $2D43
15010 - $9CB9
15020 - $4AE2

15030 - $E94D
15040 - $028F
15050 - S0ADF
15060 - $4825
15090 - $61AF

.’

INVADERS continued from page 57

12000 VTAB 5: HTAB 7: PRINT "WHAT IS
YOUR SKILL LEVEL?'";: VTAB 7:
HTAB 9: PRINT "....2....
3....4....5";: VTAB 9: HTAB 14:
PRINT ''< PICK ONE >'';

12018 A = 5

12020 KEX = PEEK (- 16384): IF KE¥
< 127 THEN 12059

12030 IF KE% < 177 OR KE% > 181 THEN
GOTO 12080

12040 SKX = KEX - 176: GOTO 12100

12058 VTAB 7: HTAB A * 5 + 4:
INVERSE : PRINT A;:2Z = PEEK
(NO) - PEEK (NO): FORC =1 TO
15: NEXT C: NORMAL : HTAB A % 5 +
4: PRINT A;

12060 A = A+ 1: IFA> 5 THEN A = 1

12070 GOTO 12020

12@8@ VTAB 2:INVERSE: FOR B=1 TO LEN
(ER$): HTAB B+5: PRINT MIDS((ER$S
),B,1);: Z = PEEK (NO): NEXT B

12098 PRINT CHR$ (7):: POKE ST, @:
HTAB 5: PRINT RIGHT$ (SP $, LEN
(ER$) +1): NORMAL : GOTO 1202@
121@8 VTAB 5: HTAB 1: CALL - 86
8: VTAB 7: CALL - B68: VTAB 9:
CALL - Bé8:

12200 GOSUB 130@@: VTAB VINVADER ¥:
HTAB HINVADERX: PRINT
INVADERS (1)

12210 GOSUB 4@0

1298@ GOTO 1020

12999 END

13080 IF SKX < &6 THEN SKX = SKY + 1

13810 FOR A = @ TO 2:INSCA) = " v
NEXT A

13020 NX = SKX + 2: FORA =1 TO
NX:INSC1) = INSCT) + "1 + [§ +
CHRE (913 + 't 1

13030 INSC@) = INSC@) + "/ ' + CHRS
(228) + " ":INS(2) = IN$(2) +
ll< > "

13048 NEXT A: RETURN

1320@ INVERSE : GOSUB 22@: GOSUB
1329@: VTAB IV%: HTAB IHX: PRINT
"1 GOSUB 1329@: NORMAL :
GOSUB 220

13218 VTAB VG%: HTAB HGX - 2: PRINT
M=iffi="":: GOSUB 1329@: VTAB VG¥
= 1: HTAB HGX%: PRINT "1 -
GOsSuUB 13290

13220 VTAB VGX: HTAB HGX — 2: PRINT
Y= w =ll2: GOSUB 1329@: VTAB VGX
= 1: HTAB HGX: PRINT """ ::
GOSUB 1329@

13230 VTAB VGX: HTAB HGX - 2: PRINT
"= M:: GOSUB 1329@: VTAB VGX
= 1: HTAB HGX: PRINT " '* ;2
GOSUB 13290

13240 VTAB VGX: HTAB HGX - 2: PRINT
nrts s GOSUB 13290

13250 FOR E = 1 TO 100: NEXT E

13268 HGX = 19: GOSUB 4@@: RETURN

13298 FOR E = 1 TO 1@:BU = PEEK
(NO): NEXT E: RETURN

20008 AGX = AGX + 1

20010 VTAB VIX: HTAB 1: CALL - B&8:
VTAB VIX + 1: HTAB 1: CALL - 868

20020 VIX = SKX +AGX: HIX =3: IT% =1

20020 cosuB 13000

200898 GoTO 1009

2100@ HOME : VTAB 5: HTAB 5: PRINT
"YOUR FINAL SKILL LEVEL WAS "'SK¥

21010 VTAB 7: HTAB 5: PRINT "YOUR
FINAL SCORE WAS "PTX

21878 VTAB 13: HTAB 5: PRINT "DO YOU
WISH TO TRY AGAIN? (Y/N)'": GET
ANS: IF ANS = "Y'' THEN GOX = 1:
GOTO 10000

21080 IF AN$ = "'N'" THEN TEXT :

: END

2109@ GoTO 21870

HOME

Checksums for Text Invaders

9 -PA726
10 - $49B4
20 - $FB90
30 - §20A7
35 - 3EB1D
40 - GBEO1
45 - $DB40
50 - $A838
52 - 54155
a5 - §1C42
60 - $FD78
65 - 5080A
70 - $EA60
72 - BFEAG
75 - $C683
80 - $3AAF
85 - $BB54
90 - $AACD
100 - $0379
110 - $71B9

120 - $89F9
150 - $DA2D
155 - $F374
160 - $79D6
170 - §5B7D
190 - $1A60
200 - $8CB1
210 - BE4C0
220 - $D8D9
230 - $4EFF
300 - $4F3F
350 - $3002
400 - $027C
410 - $6DF8
420 - $8090
430 - §7415
450 - $98EE
500 - 85083
510 - $7A89
520 - $437D

530 - 38720
540 - $1ACE
550 - $695D
570 - $7EA2
580 - $1514
590 - $5EBD
600 - $CAB3
605 - $108C
610 - $9BOE
615 - $2333
620 - $86C2
625 - $C049
630 - 5FB28
640 - $A278
650 - $1750
660 - $5684
670 - $79F0
690 - $841A
700 - SEE7E
750 - $D459

770 - 3DDE4
780 - $506D

790 - $2300
800 - $07C3
810 - $888C
820 - $BODE
830 - $22DC
840 - $OECT
850 - $DDED
860 - $9262
880 - $7575
830 - $57D9
900 - $ABOB
905 - $r699
910 - §F7C3
915 - $9B4B
920 - $B160
930 - $55E0
935 - $DB08
940 - $42EF

945 - $18E4
950 - $C1F8
960 - $14FE
970 - $CCE8
980 - $0612
990 - $2B62
1000 - $C2DE
1010 - $04CC
1020 - $9564
1040 - $5737
1050 - $ACF4
1080 - $E3F3
1090 - $DB61
1500 - $BESC
1510 - $4A85
1520 - $5341
1530 - $84B1
1600 - $FD18
1610 - $7AF9
1999 - $4F47

2000 - 3COE7
2010 - $DB27
2400 - $6913
2410 - $8EB2
2420 - $29E5
2430 - $9BAE
2500 - $D30C
2510 - $34EC
2520 - $2207
10000 - $9D2A
10100 - $2C1F
10110 - $F29E
10120 - 30014
10130 - $7002
10140 - $A7EE
10150 - SAD6E7
10160 - $3FBO
10170 - $7E62
10180 - §0FAG
10500 - 0103

10510 - $A600
10520 - $8C9D
10530 - SACFF
10540 - $7D8E

10550 - $FCDE
10560 - $1DF0
10570 - $9B68
10580 - $2E96
10590 - $68BA
10800 - $2BFA
10800 - $53EF
10800 - $7738
10910 - $522D0
11000 - $E960
11010 - $EB59
11020 - $DDBE
11030 - $FFOD
11050 - $B73D
11060 - $6CAD
11070 - $B84B

11100 - §97A0
11110 - §C6BE
11120 - $B789
11200 - $5CC3
11210 - $B0ZE
11220 - $C30F
11230 - $0537
12000 - $8135
12010 - $FAEC
12020 - $A3CB
12030 - $4276
12040 - $FOC4
12050 - $3935
12060 - $4928
12070 - $8958
12080 - $6165
12080 - $FE3E
12100 - $BDFF
12200 - $BE20
12210 - $EC27

12900 - $39CE
12999 - 3DEDE
13000 - SAECA
13010 - $E6AC
13020 - $7E06
13030 - $F3D0
13040 - §C1C3
13200 - $D5DE
13210 - $D461
13220 - $8476
13230 - $DFFC
13240 - $AFFO
13250 - $67B3
13260 - $FB1D
13290 - $B8DY
20000 - $CFB8
20010 - $0421
20020 - $D6D5
20030 - $890F
20090 - $CF68

21000 - ABOA
21010 - 0414
21070 - $2834
21080 - $B161
21080 - $80A8

&

The Best of Hardcore Computing Page 61

v.:;»v«z. ;
A R

A

i sl

$300,

G

L
@

e

et 2

R
wa

Al
CHECKSOF
& g

3 ,3»\--2;-&4
G

5

@

G E

-
e
i e s

el
i]
i i

i e

; i
S S

e
T

500

TRy

u:;‘»v.ﬁ- %
on,

BR
loce
st

wa
ways
BE
T

al
3

e

should
ut-of-

T

T
R

the

;
EHE
§®'9‘$.' i
Lhaat
me

it
i
 sa T

Gamay

i ‘;Q
e th

ne

<‘s&?

e
fsums
Compal
Rt
W
tered th

0
1L

G

Las

aaE

N CHE

urscrea

Im R
en

df

2
blis

el pei=Rad g3t

Lamaiore Bl el

o i S

A e

it

G

oRBnE2eNEeReN v B
sBgosoonsmegmoLa: e
i I - Lt Rl R Bl

oo W&%%%ﬁ@ﬁ&a&ﬁm@mﬂ P ESih ___Vw

n the

daiE
e 1

o
st
Y

e

“mu
:

22c

S g usay

ARRRARE,

i Y et

o

i
)
pre

u-”lo.ﬂvc o.w».«oe”.
%num.&mw., h

ha
inui

i

G g i

¥o
con

&

e

i

5 gw@ﬁ . v.n.

.&Wi& M
_mﬁ

%
oo

i
e

388

o

o sn s

T

ok
o I z G sm\wa«mw&.@;.
SRR : —— ; e ;
TR R SRR . e
g e R e T R s :
L e e

O s S 3 e
i

it

somE

5%

T
FEEeT

P
S

R

e s
sillgan

L

